
HARNESS THE POWER OF

COMPUTATIONAL SYSTEMS

COMPUTER

SCIENCE

UNLEASHED

WLADSTON FERREIRA FILHO

MOTO PICTET

COMPUTER

SC IENCE

UNLEASHED

COMPUTER

SC IENCE

UNLEASHED

HARNESS THE POWER OF
COMPUTATiONAL SYSTEMS

Wladston Ferreira Filho

Moto Pictet

Las Vegas

©2021 Wladston Ferreira Filho and Raimondo Pictet

All rights reserved.

Published by Code Energy, Inc.

 hi@code.energy

 http://code.energy

 http://instagram.com/code.energy

 http://twitter.com/code_energy

 http://facebook.com/code.energy

 304 S Jones Blvd # 401 Las Vegas NV 89107

No part of this publication may be reproduced, stored in a

retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording or otherwise,

without permission from the publisher, except for brief quo-

tations embodied in articles or reviews.

While every precaution has been taken in the preparation of

this book, the publisher and the authors assume no responsi-

bility for errors or omissions, or for damages resulting from

the use of the information contained herein.

Publisher’s Cataloging-in-Publication Data

Ferreira Filho, Wladston.

Computer Science Unleashed: harness the power of computational

systems / Wladston Ferreira Filho; with Moto Pictet. — 1st ed.

x, 254 p. : il.

ISBN 978-0-9973160-3-2 (Hardback)

ISBN 978-0-9973160-4-9 (ebook)

1. Computer networks. 2. Internet. 3. Computer network protocols.

4. Regular expressions (computer science). 5. Statistics. 6. Data

mining. 7. Machine learning. I. Title.

004 – dc22 2020925732

First Edition, January 2022.

To our friends Christophe and Mateus, one of whom

bet we would finish this book by the end of the year.

Computer science has a lot in common with physics. Both are

about how the world works at a rather fundamental level.

The difference is that while in physics you’re supposed to

figure out how the world is made up, in computer science

you create the world. In mathematics, as in programming,

anything goes as long as it’s self-consistent. You can have

a set of equations in which three plus three equals two.

You can do anything you want.

—Linus Torvalds

Explaining where his love for computers stems from.

CONTENTS

Preface . ix

1 Connections . 1

1.1 Links . 2

1.2 Internet . 9

1.3 IP Addressing 16

1.4 IP Routing . 23

1.5 Transport . 32

2 Communication . 45

2.1 Names . 46

2.2 Time . 57

2.3 Access . 63

2.4 Mail . 66

2.5 Web . 74

3 Security . 87

3.1 Legacy . 88

3.2 Symmetry . 96

3.3 Asymmetry . 103

3.4 Hashing . 108

3.5 Protocols . 115

3.6 Hacking . 119

4 Analysis . 133

4.1 Collection . 135

4.2 Processing . 139

4.3 Summarizing 146

4.4 Visualization . 155

4.5 Testing . 170

5 Learning . 181

5.1 Features . 185

5.2 Evaluation . 196

5.3 Validation . 200

5.4 Fine-Tuning . 205

vii

COMPUTER SCiENCE UNLEASHED

Conclusion . 221

Bonus: Patterns . 223

Matching . 224

Quantifiers . 230

Anchors . 233

Groups . 236

Appendix . 241

I Numerical Bases 241

II Cracking the Shift Cipher 242

III Cracking the Substitution Cipher 244

IV Evaluating Classifiers 246

viii

PREFACE

I never liked the term ‘computer science’. The main reason I

don’t like it is that there’s no such thing. Computer science

is a grab bag of tenuously related areas thrown together

by an accident of history, like Yugoslavia.

—Paul Graham

Most technological breakthroughs of our era are taking place in a

new digital world created by programmers. Computer scientists

combine different fields of study in order to empower this new

world. This book explores the foundations of some of these fields,

including networking, cryptography, and data science.

We’ll start with the story of how two computers can be linked

to share information, and take you all the way to the rise of email

and the Web. We’ll explore cryptography and understand how the

Internet and other systems that deal with private data are made

secure. Then, we’ll learn how knowledge can be obtained from raw

data and how machines can be taught to forecast the future.

We hope these stories will familiarize you with important con-

cepts that can benefit coders and tech enthusiasts alike. Our goal

is to cover what beginners need in order to get up to speed in net-

working, security and data science, without the heavy academic

rigor that sometimes makes these topics unbearable.

Figure 1 “Data is the new oil”, by Amit Danglé & Ivano Nardacchione.

ix

COMPUTER SCiENCE UNLEASHED

This book was made possible by the supporters of our previous title,

Computer Science Distilled. We had written our first book to explain

the fundamental principles of computer science. Our enthusiastic

readers asked for more, so we got back to work! This time, we don’t

explore the core of our discipline, but rather the new worlds it has

enabled us to create.

Is this book for me?

If you’re a novice programmer, this book was written for you.

It doesn’t require any programming experience, as it essentially

presents ideas and mechanisms: we want you to learn how cool

stuff works. If you’re curious and want to understand how the Inter-

net is built, how hackers attack computer systems, or why data is

the gold of the 21st century, you’ll find this book worthwhile. And

for those who already studied computer science, this book is a great

recap to consolidate your knowledge and expertise.

Acknowledgments

We are deeply grateful for everyone who supported our multi-year

effort to create this book. We would especially like to thank Abner

Marciano, André Lambert, Caio Magno, Carlotta Fabris, Damian

Hirsch, Daniel Stori, Eduardo Barbosa, Gabriel Pictet, Guilherme

Mattar, Jacqueline Wilson, Leonardo Conegundes, Lloyd Clark,

Michael Ullman, Rafael Almeida, Rafael Viotti, and Ruhan Bidart.

Finally, we’re grateful to Claire Martin, our proofreader, and Pedro

Netto, our illustrator, for making this book so much better.

May you create many worlds,

Wlad & Moto

x

CHAPTER 1

Connections

This is an entirely distributed system, there isn’t any

central control. The only reason it works is because

everybody decided to use the same set of protocols.

—Vint Cerf

H
umans crave connections, and the advent of the digi-

tal revolution has empowered us to be more connected

than ever before. The Internet has unleashed upon bil-

lions of people unprecedented economic and political freedom, as

well as powerful means of control and domination. Yet, the vast

majority of us are oblivious to its inner workings.

Skilled people who can program computers to use the Inter-

net are at the vanguard of the digital revolution. This chapter will

teach you how the Internet works, so you can join this select group.

You’ll learn to:

Link computers to one another to make a network,

Combine networks using the Internet Protocol,

Locate a recipient from its Internet address,

Find a route through the Internet to that location,

Transport data between distant applications.

Before the Internet came along, telecommunication between two

parties required a direct physical link. In the 1950s, each telephone

had a wire leading directly to a central station. For a call to go

through, an operator had to physically connect the wires of two

telephones. For long distance calls, wires were laid out between

distant stations, and several operators in different places had to

physically connect the chain of wires linking the two phones.

The Internet did away with this. Wires aren’t physically recon-

figured to create direct, exclusive links. Instead, the information

1

2 | COMPUTER SCiENCE UNLEASHED

is retransmitted step by step via a chain of linked devices until it

reaches its destination. This eliminates the need for wire operators

and central coordination. Also, wires are no longer constrained to

serve a single connection—many concurrent connections can share

the same wire. This allows global communications to be instant,

cheap and accessible.

However, modern networking technology is more intricate than

early telephony. It has many successive layers, each building on top

of the previous. Let’s explore how connections are made at these

different levels, starting with the most basic layer.

1.1 Links

A direct connection between two computers is achieved through a

transmission medium: a physical channel where signals can flow.

This may be a copper wire carrying electric currents, a fiber-optic

cable directing light, or air hosting radio waves. Each connected

computer has a network interface to send and receive signals in

the transmission medium. For instance, cellphones have a radio

chip and antenna to handle radio signals traveling through the air.

air

LINK

copper wire

LINK

Ada Charles

Andrew

Figure 1.1 A link is established between two network interfaces if they

sharea transmissionmediumandagreeon the rulesof communication.

In order to communicate, network interfaces must agree on the

rules to follow when sending and receiving signals. This set of

rules is called the link layer.

Connections | 3

When a medium exclusively connects two computers, we say

theymaintain a point-to-point connection, and their link layer relies

on the most basic set of rules: the Point-to-Point-Protocol (PPP).

It merely ensures the two computers can identify each other and

exchange data accurately.

However, connected computers don’t always get to enjoy such

an exclusive link. Often, they must share the transmission medium

with several other computers.

Shared Links

One way to link computers in an office is to plug each of them into

a hub with a wire. The hub physically connects all the wires that

reach it, so a signal sent by one computer will be detected by all the

others! This will also happen on your home WiFi, since the same

radio frequency is used by all connected devices. Communications

can become messy if all of them use the medium at the same time.

Ada Charles

Andrew

Figure 1.2 Amessage sent on a shared link will be detected by all.

The link layer contains a set of rules to define how computers should

share their communication medium, fittingly called Medium Access

Control (MAC). The rules resolve two main challenges:

4 | COMPUTER SCiENCE UNLEASHED

COLLiSiONS If two computers send a signal through the same

medium at the same time, the resulting interference garbles both

transmissions. Such events are called collisions. A similar problem

occurs when your group of friends or family talk over each other

and no single voice can be clearly heard.

There are methods to avoid collisions. First, only start transmit-

ting signals when no other computer is transmitting. Second, mon-

itor your communications—if a collision occurs, wait for a brief but

random amount of time before trying to transmit again.

CharlesAda

Andrew

Figure 1.3 Collision between Ada and Andrew.

Andrew

CharlesAda

.08 ms

.11 ms

Figure 1.4 Ada and Andrew both resend after a random duration.

Connections | 5

These methods have some limitations. When there are too many

transmission attempts through a medium, collisions occur relent-

lessly. We say the link is saturated when excessive collisions break

down communications. Have you ever been frustrated at a large

venue because your phone wouldn’t send text messages or make

calls? This may happen if too many phones are attempting to com-

municate concurrently and the cellular link becomes saturated.

PHYSiCAL ADDRESSiNG Ada and Charles have a direct link between

their computers. Ada wants to talk with Charles, so she trans-

mits a signal with her message through the medium. However,

the medium is shared, so everyone linked to the medium gets the

message. How can the other computers know that the signal they

picked up was not destined for them?

Andrew

CharlesAda

FROM lovelylaptop

TO babbage_pc

lovelylaptop babbage_pc

my_net

Figure 1.5 Andrew’s network interface discards the message.

Each computer’s network interface has an identifier, known as its

physical address or hardware address. A transmission in a shared

medium must begin with two such addresses: that of the recipient

and that of the sender. Upon receiving a transmission, a computer

will know if it should be ignored or picked up and to which address

it should reply.

6 | COMPUTER SCiENCE UNLEASHED

This can only work if physical addresses are unique: if two com-

puters use “my_netinterface”, we’re back to square one. For

this reason, virtually all network interfaces follow a naming scheme

defined in the rules of Medium Access Control. These standard

physical addresses are called MAC addresses.

MAC Addressing

Computers, smartphones, smart watches, and smart televisions can

each have WiFi, Bluetooth, and Ethernet network interfaces. Each

network interface has its own, uniqueMAC address marked into the

hardware during production. You should not worry about assigning

a MAC address to your computer: you can always use the one that

came with its network interface.

Since MAC addresses are simply large random-looking num-

bers, network interface manufacturers around the world must

coordinate to avoid accidentally assigning the same number to

two different devices. To this end, they rely on the Institute of

Electrical and Electronics Engineers, or IEEE, which assigns each

of them a different range of MAC addresses.

A MAC address is expressed as six pairs of hexadecimals1 sepa-

rated by colons. The first half of the address is an identifier assigned

by the IEEE to a unique manufacturer. This manufacturer then

chooses a unique second half for each network interface.

60:8B:0E:C0:62:DE

Here, 608B0E is the manufacturer number. This specific number

was assigned by IEEE to Apple, so this MAC address should belong

to an Apple device.2 A device’s MAC address is often written on

a label stuck to the packaging or on the device itself, next to the

serial number.

1In day-to-day life, we almost always express numbers in decimal form, where

each digit is one of ten characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Computer scientists,

on the other hand, like expressing numbers in hexadecimal form, where each digit

can be one of sixteen characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. For more

about number bases, see Appendix I.
2You can look up who manufactured a device by entering the first six digits

of its MAC address at http://code.energy/mac-lookup.

Connections | 7

FROM 80:BB:EB:41:64:61

TO 00:06:DD:43:68:42

80:BB:EB:41:64:61 00:06:DD:43:68:42

04:B3:B6:43:52:53

Figure 1.6 Each MAC address is unique.

There’s a special address reserved for transmissions to all com-

puters in a medium. It’s called the broadcast address, and it

reads FF:FF:FF:FF:FF. You use it when you try to connect to an

unknown device. For instance, when your smartphone’s WiFi card

isn’t deactivated, it persistently broadcasts to FF:FF:FF:FF:FF

that it’s looking for an access point. Discoverable access points will

respond with their own MAC address so you can establish a link.

Such discovery broadcasts, like all other transmissions, contain

the sender’s MAC address. Walking around with a smartphone can

therefore be like walking around with a loudspeaker shouting your

name non-stop, only using radio waves instead of sound and the

MAC address instead of your moniker. In 2013, Edward Snowden

revealed that the NSA3 monitored themovements of people by sniff-

ing WiFi transmissions in big cities, storing records of where each

MAC address was seen.

You can also set your own network interface to promiscu-

ous mode, and it will pick up all transmissions regardless of their

intended recipient. Doing so allows you to discover hidden WiFi

networks, to list which MAC addresses are in your area, and some-

times even to read the contents of other people’s transmissions.

Browsing the Internet through an unsecured WiFi network can

therefore be unsafe: anyone in range can hear what you broadcast.

This is why encryption4 is important for WiFi’s link layer.

Be careful: a network interface can be configured for its trans-

missions to start with any MAC address both for the recipient and

3National Security Agency, a US government spying organization.
4Encryption allows messages to look garbled to eavesdroppers.

8 | COMPUTER SCiENCE UNLEASHED

for the sender. Nothing stops a malicious agent from impersonat-

ing you by using your physical address in their transmissions. This

type of attack is known as MAC spoofing. When the link layer was

originally developed, security wasn’t a concern. Protocols are evolv-

ing to become more secure and neutralize such attacks, but it’s an

ongoing process.

Frames

Sometimes, a transmission must contain a lot of data, and send-

ing out a single, big fat message is impractical. Network interfaces

and computers are not all capable of the same transmission speeds.

Moreover, what would happen if a collision occurred in the mid-

dle of the transmission? The entire transmission would have to be

discarded, as it would be difficult for the sender and receiver to

determine exactly which parts of the message were received and

which were not.

To solve these issues, long messages are always split into small

parts, each sent as an independent transmission. The time between

transmissions can vary according to the capabilities of both comput-

ers: slower devices need longer breaks. If an error occurs, it is only

necessary to discard and resend the small transmission that failed.

If you can’t give me

poetry, can’t you give

me poetical science?

message

ETHERNET FRAME

00 60 DD 43 68 42

to from

80 BB EB 41 64 61 00 60

type FCS

92 BD B0 4249 66 20 79 6F ... 3F

payload

0000 0000 0110 0000

1101 1101 0100

0100 1001 0110

.... 0000 0100 0010

Figure 1.7 An Ethernet frame. Once it is transmitted in a copper wire,

it becomes a series of electric signals that encode a number. The Eth‑

ernet protocol instructs how to interpret this number. For instance, the

first 12 hex digits of the number encode the destination MAC address.

Connections | 9

Each independent transmission is called a frame. Standard WiFi

protocols cap the size of frames to 2,346 bytes. Thirty-four bytes are

needed for MAC addresses and error-detecting codes. Therefore, a

WiFi frame can ultimately carry up to 2,312 bytes of data, called the

payload.5 In wired networks, the maximum frame size is usually

1,526 bytes, with room for a 1,500 byte payload.

On rare occasions, disturbances in the medium interfere with

a transmission, and the receiver picks up signals that don’t encode

exactly the same information that the sender intended to transmit.

Let’s see the special field that was added to address this problem.

FCS The last part of the frame is the FCS (Frame Check Sequence),

and it ensures that information was transmitted accurately. The

FCS doesn’t add new information to the transmission: it is merely

the result of a calculation using the contents of all other fields.

Changing any content before the FCS should cause the FCS num-

ber to change as well.

Upon receiving a frame, a computer calculates the expected FCS

number from the information it received and compares it to the

received FCS. If they don’t match, the frame is discarded. If they

match, we know that the message wasn’t garbled and trust that the

received payload is error-free.

TYPE The frame shown in Figure 1.7 has one last field we haven’t

talked about: the payload type. It tells the receiver which rules

should be followed to interpret the data in the frame’s payload. In

the next section, we’ll explore the most common set of such rules.

1.2 Internet

We’ve seen that the link layer enables directly connected comput-

ers to exchange messages inside frames. The internet layer, also

known as the network layer, specifies how to transmit these mes-

sages between computers that are not directly connected.

The trick is to equip some computers, called routers, with mul-

tiple network interfaces. All computers in a network are then linked

5If we encode one byte per character, a WiFi frame has room for about 500

words, enough to fill a page of text.

10 | COMPUTER SCiENCE UNLEASHED

to at least one router, and all routers are linked to at least one other

router. When a router receives a message at one of its network

interfaces, it can forward it to another router through a different

network interface.

LOCAL AREA NETWORKS We can ask a router we’re linked with to

forward a message to a computer we’re not linked with. Suppose

you have a wired network in your home connecting a router and a

desktop computer. Suppose the router is also directly connected to

a smartphone in a different, wireless network.

Even though the desktop computer and the smartphone are not

directly connected to the same network, they can send messages to

each other using the router as a relay. Computers from different

networks in close vicinity that can talk to each other through routers

form a larger network, called a Local Area Network (LAN).

In a home or small office, one router will be enough to link all

the computer networks in the area. When assembling a LAN that

covers a large organization such as a university or hospital, many

routers may be required to link all the different computers networks

into a fully connected system.

Ada Charles

ROUTER

Andrew

Figure 1.8 In this small LAN, Ada and Andrew can send messages to

each other through their router Charles.

WiDE AREA NETWORKS But why stop there? If your router is linked

with a router outside your home, which in turn is linked with a

router at the university, you can ask for your message to be for-

warded to computers on the university’s LAN. When distant LANs

are connected to each other, they form aWideAreaNetwork (WAN).

Connections | 11

ROUTER

Ada Charles

ROUTER

Andrew

Louis

Marie

Figure 1.9 Charles is connected to a distant router, Marie, and they

both forwardmessages around this WAN.

A WAN can grow larger as more LANs are connected to it. Differ-

ent WANs can also be connected to form an even larger WAN.

The largest WAN in the world is a collection of thousands of

interconnected networks that we call the Internet. It’s the net-

work we use every day to send emails and browse the web; and

as of 2020, it contained over a billion computers. Let’s see how

they all got connected.

Interconnection

The most straightforward way to connect your router to the Inter-

net is to pay for it. Some organizations on the Internet will link one

of their routers to yours, and allow messages to and from your net-

work to pass through their network via this link. This paid service

is called transit, as all of your messages will transit through their

network before going to the specific router you’re aiming for.

12 | COMPUTER SCiENCE UNLEASHED

However, transiting through a third party network is not always

necessary in order to connect to another router of the Internet.

Say, for example, that two nearby universities communicate a lot;

they can link their routers in order for messages to flow directly

between their networks. This can save money, as these messages

would otherwise have to transit through a paid connection. The

free exchange of messages between the networks of different orga-

nizations is called peering.

Routing

Any computer linked to a router of the Internet can ask for its mes-

sages to be forwarded by other routers. Messages can be routed

over large distances. For instance, there is a system of submarine

cables linking routers in many coastal cities:

Figure 1.10 The SAm‑1 system links routers in 16 cities from 11 differ‑

ent countries, using over 15 thousandmiles of underwater cables.

Connections | 13

There is no direct link between the routers in Miami and Buenos

Aires. However, Miami is linked with Puerto Rico, which is itself

linked with Fortaleza, which is linked with Rio de Janeiro, which

is finally linked with Buenos Aires. Miami and Buenos Aires can

exchange messages through these cables if routers along the way

forward them back and forth. Today, there are submarine cables

linking hundreds of coastal city routers around the globe:

Figure 1.11 Fiber‑optic submarine cables currently in service.

Virtually every other city on Earth is directly or indirectly linked

to these coastal cities, often through cables in the ground. Com-

munication satellites also have routers to establish wireless links to

remote locations. All routers can forward messages, so a message

you send on the Internet can be routed to any other computer on

the Internet. That is, if a path to it can be found.

Location Addressing

In the link layer, computers are identified by a physical address.

Physical addresses uniquely identify computers, but they don’t give

any hints on where a computer is connected and how it can be

reached. If the computer moves to the other side of the world, it

will retain its physical address!

Suppose you mailed a package to Louis through the post along

with a picture of him instead of his address. This package has a

defined destination; however, an international postal service would

14 | COMPUTER SCiENCE UNLEASHED

have no way of knowing which direction the package should be sent

in order to deliver it to Louis.

Post offices must first know to which country the package

should go. The first post office in that country should then know

to which province or state it should go. The next post office should

know the city, and the final post office, the street address. We call

an address containing all this information a hierarchical address.

Similarly to post offices, routers require packages to carry a hierar-

chical address of their recipient’s location:

English Channel

Andrew

 : London : Ada

 : Dijon : Louis

from

to

London

Ada
London

Charles
London

Marie
Paris

Louis
Dijon

Figure 1.12 Ada wishes to send a package to Louis, so she requests

her router Charles to forward it. She writes on the package a hierarchi‑

cal address of Louis. Charles then knows he must send the package to

France, so he sends it to the French router he is linked with: Marie.

Connections | 15

For this mechanism to work on a global scale, all computers

involved must follow the same set of rules to create and handle

package forwarding requests. A computer in China must under-

stand a request from a computer in Nigeria, even though the two

may use different languages, operating systems and hardware.

Figure 1.13 “Before the Internet”, courtesy of http://xkcd.com.

Internet Protocol

We’ve seen a computer must follow the rules of Medium Access Con-

trol to establish a link with another computer. Similarly, it must

follow the Internet Protocol, or IP,6 to ask routers to forward mes-

sages to other computers on your LAN or on the Internet.

A message forwarding request that follows the IP rules is called

an IP packet. The IP packet is essentially a big number, where

digits in specific positions encode key information. Almost every

computer produced in the past few decades understands IP packets

and is able to forward them. This makes an IP packet easily movable

from one computer to the next, until it reaches its destination.

An IP packet contains the location addresses of its sender and

recipient, followed by whatever data they want. To send an IP

packet, we transmit a frame where the payload is the IP packet,

and the frame type is 86DD. When a router receives a frame of this

type, the IP packet is re-transmitted in another frame to the next

computer in the path of the packet’s destination.

6By “IP”, we mean its latest version, IPv6. A legacy version of the protocol,

IPv4, is still used, despite being released in 1981. IPv4 can only support about

3 billion computers. IPv6, launched in 2012, can support a virtually unlimited

number of computers. As of 2020, a third of the Internet’s computers use IPv6.

16 | COMPUTER SCiENCE UNLEASHED

Ada
London

Charles
London

 : London : Ada

 : Dijon : Louis

from

to

I have my hopes of putting

cerebral phenomena into

mathematical equations.

message

0000 0000 0110 0000

1101 1101 0100

1000 1010 0101

.... 0000 0100 0010

00 60 DD 43 68 42

to from

80 BB EB 41 64 61 86 DD

type FCS

07 7E 24 5F22 B4 C5 D9 0C ... 95

IP packet

Figure 1.14 Ada sends an Ethernet frame to her router Charles con‑

taining an IP packet for Louis. The Ethernet frame therefore contains

the physical address of Charles and the packet contains the location

address of Louis. Charles will then forward the packet inside a new

frame of his own containing the physical address of someone in France.

In order for IP packets to be forwarded around universally, every-

body must agree on a standard for location addressing. We’ve seen

how physical addresses are allocated bymanufacturers according to

the rules of Medium Access Control. Let’s now learn how the Inter-

net Protocol does this for location addresses. We will then see how

the Internet Protocol defines routing rules based on these addresses.

1.3 IP Addressing

The Internet Protocol sets the rules on how location addresses

work—that’s why they’re called IP addresses. Computers can only

send or receive IP packets after they get an IP address. Permission

to use a group of IP addresses is first granted to an organization.

These addresses are then assigned to computers which are directly

or indirectly associated with the organization.

Connections | 17

In order to explain how this process works, let’s define what IP

addresses are and how they’re written.7 An IP address is a number

128 bits long.8 They’re typically written in hex, with colons separat-

ing eight groups of four digits. This is Facebook server’s IP address:

2a03:2880:f003:0c07:face:b00c:0000:0002

IP addresses can be shortened by omitting the leading zeros of any

four-digit block:

2a03:2880:f003:c07:face:b00c::2

As with a postal address with country, city and street, IP addresses

are hierarchical for routing to be possible. While the broadest part

of a postal address is the country, the broadest part of an IP address

is the routing prefix:

2a03:2880:f003:c07:face:b00c::2

routing prefix

The prefix shows up as the first digits of an IP address. Once an

organization is granted such a prefix, it has the right to assign any

IP address that begins with that prefix to its computers. The prefix

has a variable length: organizations that have more computers to

manage are granted shorter prefixes. Some organizations are even

granted multiple prefixes.

For example, we know that all addresses that begin with the

prefix 2a03:2880 are assigned to computers inside Facebook’s net-

work. Those that begin with 2c0f:fb50:4002 are in Google’s

network in Kenya. For its data center in Singapore, Google was

granted the prefix 2404:6800.

For routing purposes, the LANs and WANs that share the same

prefix are organized in small networks called subnets. The digits

7We’ll present IP addresses as defined in the latest version of IP. Legacy IPv4

addresses are still used. They are written as four groups of up to three digit deci-

mal numbers, separated by dots, for example, 192.168.0.1.
8It takes 128 zeros and ones to write the number. This means it’s a number

between 0 and 340,282,366,920,938,463,463,374,607,431,768,211,456.

18 | COMPUTER SCiENCE UNLEASHED

after the routing prefix and up to the middle of an IP address indi-

cate in which subnet a computer can be found.

2a03:2880:f003:c07:face:b00c::2

subnet

This means there’s a network at Facebook where all computers have

IP addresses that begin with 2a03:2880:f003:c07. Together,

the routing prefix and the subnet form the network ID of an IP

address. The network ID is always 16 digits long (including omitted

zeros). This means an organization with a longer routing prefix can

have less subnets within it.

Finally, the next 16 digits of an IP address are called the inter-

face ID, as they identify a specific network interface within a sub-

net. Many network administrators simply fill in this part of the IP

address with the device’s MAC address. These digits can be any

number, as long as it’s only used once per subnet.

2a03:2880:f003:c07:face:b00c::2

interface ID network ID

For this addressing system to work universally, there must be a

mechanism to ensure no two organizations use the same routing

prefix. As was the case for MAC addresses, engineers solved this

through some international coordination.

Figure 1.15 Don’t ask your boss where she lives!

Connections | 19

IANA

Engineers worldwide agreed that an American non-profit organi-

zation, the Internet Assigned Numbers Authority (IANA), decides

who gets control over which IP routing prefixes. In practice, IANA

delegates most of its power to five non-profit organizations called

Regional Internet Registries, or RIRs. To do so, it allocates each

RIR short hex combinations that they can use as the first digits of

the routing prefixes they assign.

■■■■:■■■■:■■■■:■■■■

IANA

260■:■■■■:■■■■:■■■■

ARIN

2a0■:■■■■:■■■■:■■■■

RIPE NNC

280■:■■■■:■■■■:■■■■

LACNIC

2c0■:■■■■:■■■■:■■■■

AFRINIC

240■:■■■■:■■■■:■■■■

APNIC

Figure 1.16 Examples of allocations to each RIR.

LACNIC

RIPE NNC

AFRINIC

APNIC

ARIN

Figure 1.17 IANA delegates its IP addressing power geographically:

each RIR is responsible for a different region.

20 | COMPUTER SCiENCE UNLEASHED

To obtain a routing prefix for your organization, you must make a

request to the RIR of the region where your routers will be. That

RIR will then assign you a prefix starting with one of their combi-

nations of hex digits that IANA allocated them.

For example, Facebook, which has headquarters in Ireland, was

granted its routing prefix by RIPE NCC. Likewise, the Swiss bank

Credit Suisse has a Latin American branch that was granted a rout-

ing prefix by LACNIC:

■■■■:■■■■:■■■■:■■■■

IANA

280■:■■■■:■■■■:■■■■

LACNIC

2a0■:■■■■:■■■■:■■■■

RIPE NNC

2801: 80:1380:■■■■

Credit Suisse

2a03:2880:■■■■:■■■■

Facebook

Figure 1.18 IP address allocation chain for two companies.

This means computers in the Latin American Credit Suisse branches

may be assigned IP addresses as follows:

2801:80:1380:■■■■:____:____:____:____

Network administrators in the bank will assign a unique combi-

nation of hex digits to each of their subnets such that they fit in

the remaining space of the network part ■■■■. Since each hex

digit can have 16 different values, the bank has enough space for

164 = 65, 536 different subnets. Facebook, being a larger organi-

zation, was granted a prefix with room for over 4 billion subnets!

Connections | 21

We’ve seen that network administrators can choose how the six-

teen blanks of the interface ID are to be filled for individual devices.

Such devices may then send and receive IP packets to and from the

Internet as long as their router has connectivity.

Internet Service Providers

Most individuals and small organizations don’t deal directly with

RIRs, nor do they maintain peering links to other computer net-

works. Instead, they buy Internet connectivity from specialized

companies, which are called Internet Service Providers (ISP). ISPs

install routers close to their customers. That way, they can eas-

ily link one of their routers to a router in any customer’s premises.

They also allocate a routing prefix for each of their customers.

Let’s see how it works in practice. In the United Kingdom, an

ISP called Sky was granted the routing prefix 2a02:0c7f. Sky

operates in many British cities, so the prefix is divided between their

regional bases. For instance, they assign 2a02:c7f:48 to their

Milton Keynes network and 2a02:c7f:7e to the one in Romford.9

Let’s suppose Ada lives in Romford and wants to set up a net-

work in her home. She has a desktop computer and a printer which

she wants to connect using an Ethernet wire. She also wants her

own WiFi network to connect her smartphone, tablet and laptop.

Ada hires Sky, and they link their Romford router to a router in

her home. Sky assigns Ada’s router a 14-digit routing prefix based

on the one of their Romford base. Each network in Ada’s home

(wired and wireless) gets assigned a subnet, based on the routing

prefix Sky allocated to Ada. Figure 1.19 on the next page shows the

full IP address allocation path from IANA to each of Ada’s devices.

Ada’s router receives IP packets from several different comput-

ers, yet it’s easy for her router to decide on which link to forward

each packet it receives. Packets addressed to a computer in one

of Ada’s subnets can be directly delivered. All other IP packets it

receives are forwarded through the link to the ISP.

9This information is public, you can look up the network location of any rout-

ing prefix. The practice is called IP geolocation, and it’s how websites guess the

country and city you browse from.

22 | COMPUTER SCiENCE UNLEASHED

2a02:c7f:7e26:d3■■

Ada’s home

■■■■:■■■■:■■■■:■■■■

IANA

280■:■■■■:■■■■:■■■■

LACNIC

2a0■:■■■■:■■■■:■■■■

RIPE NNC

2a03:2880:■■■■:■■■■

Facebook

2a02:c7f:■■■■:■■■■

SKY UK

2a02:c7f:7e■■:■■■■

SKY Romford
2a02:c7f:48■■:■■■■

SKY Milton Keynes

2a02:c7f:7ea4:■■■■

Charle’s home

2a02:c7f:7e26:d300

Ada’s WiFi network

2a02:c7f:7e26:d300::0

2a02:c7f:7e26:d300::1

2a02:c7f:7e26:d300::2

2a02:c7f:7e26:d300::3

2a02:c7f:7e26:d301

Ada’s wired network

2a02:c7f:7e26:d301::0

2a02:c7f:7e26:d301::1

2a02:c7f:7e26:d301::2

router:

phone:

laptop:

tablet:

router:

desktop:

printer:

Figure 1.19 IP address allocations from IANA to Ada’s devices. Her

router uses different subnets for her wireless and wired networks, and

therefore has a different IP address for each.

For routers that don’t rely on an ISP, it’s not so easy: they obtain

connectivity from links with several routers frommultiple computer

networks. But how do they decide on which link they should for-

ward an IP packet? And even then, how can they be sure that they

are forwarding it to a router closer to their final destination?

Connections | 23

1.4 IP Routing

Suppose Ada wants to send a message to Facebook from her laptop.

She will use the Internet Protocol, so she starts by crafting an IP

packet that includes her own IP address, Facebook’s IP address, and

her message as the payload. She then transmits the packet in aWiFi

frame from her laptop to her home router:

2a02:c7f:7e26:d300::2

2a03:2880:f003:c07:face:b00c::2

from

to

When is Charles’ birthday?payload

10 4C D8 E4 AC CE

to from

80 BB EB 41 64 61 86 DD

type FCS

BC AA 36 A060 00 00 00 04 ... 3F

IP packet

0000 0000 0110 0000

1101 1101 0100

1000 1010 0101

.... 0000 0100 0010

Figure 1.20 An IP packet transmitted over WiFi.10

Several routers, starting with the one at Ada’s home, retransmit

the packet until it reaches Facebook. Along the way, each of those

routers must choose in which direction the packet should “hop” to

reach the next router. The last router will then make the packet

“hop” towards its final destination computer.

Tables of Addresses

Routers choose the next hop of a packet based on its destination IP

address. In order to do so, they are equipped with a table filled with

IP addresses. Rows list possible addresses the router is configured

to recognize. For each address, the table indicates which computer

should be the next hop of a packet destined to that address. Every

router has a unique table that reflects how the router is linked. For

example, here is how Ada’s router is linked:

10We’ve included the fields of the WiFi frame which also exist in Ethernet

frames. A WiFi frame has more fields, which were hidden for simplicity.

00:60:DD:43:68:42

80:BB:EB:41:64:61

2a02:c7f:7e26:d300::2

8A:03:02:C7:EE:23

2a02:c7f:7e26:d301::1

A1:0B:9C:74:07:03

2a02:c7f:7e26:d301::2

0A:AA:F4:7E:4B:83

2a02:c7f:7e26:d300::1

WiFi

Ethernet

DSL

WiFi

Ethernet

SKY ROMFORD

ADA’S HOME

Figure 1.21 Ada’s router is connected to a desktop computer and a

printer via Ethernet, a notebook and a smartphone via WiFi, and to the

ISP via DSL (or Digital Subscriber Line, a technology that allows digital

data to flow through old telephone cables).

A1:0B:9C:74:07:03

MAC address

0A:AA:F4:7E:4B:83

8A:03:02:C7:EE:23

00:60:DD:43:68:42

80:BB:EB:41:64:61

DSLdefault

WiFi

Ethernet

Ethernet

Interface

WiFi

2a02:c7f:7e26:d300::1

2a02:c7f:7e26:d301::2

2a02:c7f:7e26:d301::1

Destination IP address

2a02:c7f:7e26:d300::2

Figure 1.22 Table that guides Ada’s router to correctly forward IP

packets to computers shown in Figure 1.21.

Connections | 25

If the router receives a packet whose destination IP address doesn’t

match any row in the table, the packet is forwarded through to the

default route. For Ada’s router, routing is simple: a packet is either

directly delivered to a computer in her home or forwarded to Sky

Romford, her ISP.

Routing is more complicated for the ISP’s router. In addition to

its peering and transit links, it receives packets from many different

customers. For simplicity, let’s suppose Sky Romford’s router only

serves two customers and has two peering links: one to the Sky

router in Milton Keynes, and the other to Oxford University. Finally,

let’s imagine it has a transit link with a larger telecom company:

Fiber

77:9D:F4:27:69:CD

2a0a:c7f:48■■:■■■■

SKY ROMFORD

SKY MILTON KEYNES

Fiber

B0:3B:F9:CA:6F:42

2a0a:207:■■■■:■■■■

OXFORD UNIVERSITY

Fiber

TIER-1 TELECOM

9A:3B:C1:EF:85:39

DSL

10:4C:D8:E4:AC:CE

ADA

2a0a:c7f:7e26:d3■■

D6:69:4E:69:3C:F6

2a0a:c7f:7e26:d4■■

CHARLES

Figure 1.23 Map of Sky Romford links. Ada, Charles, and Oxford Uni‑

versity can talk using Sky’s local infrastructure only.

26 | COMPUTER SCiENCE UNLEASHED

D6:69:4E:69:3C:F6

MAC address

77:9D:F4:27:69:CD

10:4C:D8:E4:AC:CE

9A:3B:C1:EF:85:39

B0:3B:F9:CA:6F:42

Fiberdefault

Fiber

DSL

DSL

Interface

Fiber

2a0a:c7f:48■■:■■■■:…

2a0a:c7f:7e26:d4■■:…

2a0a:c7f:7e26:d3■■:…

Destination IP address

2a0a:207:■■■■:■■■■:…

Figure 1.24 Table that guides Sky Romford’s router to correctly for‑

ward IP packets to networks shown in Figure 1.23.

This is where the IP addressing hierarchy comes in handy. In the

forwarding table of fig. 1.24, IP addresses are grouped according

to their routing prefix. This works because all IP addresses starting

with 2a0a:207 are from computers in Oxford University, and all IP

addresses startingwith 2a02:c7f:48 are from computers serviced

by Sky in Milton Keynes.

Internet Exchange Points

In order to increase capacity and speed, network administrators

often set up peering links with as many other organizations as pos-

sible. The cheapest way to do this is through places called Internet

Exchange Points, or IXPs. Organizations join an IXP by wiring their

routers to the IXP building. Every participating organization can

then establish individual peering links with other organizations con-

nected to the building.11

In fig. 1.23, only two peering links were shown for clarity’s sake.

A typical ISP actually has scores of peering links per IXP they’re

wired to. In addition, it’s common in big cities for Internet corpo-

rations like Netflix and Google to establish peering links directly

with ISPs, allowing them shorter and faster connections to many

of their customers.

11IXPs are extremely important for making the Internet well connected and

cheap. This video explains why: http://code.energy/IXP.

Connections | 27

Internet Backbone

ISPs and other telecom companies typically expand their intercon-

nections as much as possible by establishing peering links wherever

they can. However, in order to reach networks they cannot peer

with, they have to buy transit from other operators.

There is a handful of companies in the world that don’t pay

anyone for transit. These companies operate huge networks that all

peer with each other, allowing regional ISPs to be interconnected

globally. These huge networks are called Tier-1 networks, and they

form the backbone of the Internet. Some of them are operated by

AT&T, Verizon, and Lumen.12

Dynamic Routing

Large telecom companies must maintain connectivity even if some

of their transit or peering links break down. This means that they

can’t rely on a single link for each routing prefix in their table of

addresses. In fact, they have dynamic routers that map out how

other networks are interconnected in order to choose which routes

to prioritize in their tables.

Dynamic routers periodically exchange information with other

dynamic routers they’re linked to. They tell each other which net-

work prefixes are reachable through each of their links. This allows

them to determine how many hops away each link is from every

routing prefix and where these hops occur. Dynamic routers can

then determine the best route to each prefix based on metrics like

distance and speed.13

With this information, dynamic routers build a table that cov-

ers all routing prefixes. For each prefix, the table indicates which

next hop is on the best route to the final destination. When a link

is established or a link goes down, dynamic routers inform their

peers. As the news spreads, all of them update their tables to keep

forwarding packets towards the best routes.

12For an idea of how colossal these networks are, Lumen alone manages and

operates 750,000 miles of fiber optic cables. That’s more than enough cable to

reach the moon, three times!
13All five RIRs constantly disclose information on all routing prefixes they del-

egate. Dynamic routers closely track these announcements, so they can ensure

their tables have a row for every existing routing prefix.

28 | COMPUTER SCiENCE UNLEASHED

There is no central entity coordinating the exchange of this

information: routers share link details with their peers freely and

voluntarily. Consequently, routing problems often emerge.

Routing Loop

Misconfigured routers can provoke errors. Most notably, bugged

tables of addresses can send a packet back a few hops, and it gets

caught in an endless cycle of doom:

Figure 1.25 Bugged tables sending a packet round in circles.

If the tables aren’t corrected, more packets with the same intended

destination will be endlessly forwarded in circles. Too many pack-

ets can even saturate and clog the links. This is known as a routing

loop problem. Fortunately, the Internet Protocol provides a way

to identify the issue when it occurs.

HOPLiMiT To interrupt perpetual routing loops, all IP packets carry

a hop limit between 0 and 255. It indicates the number of times the

packet can be forwarded by routers. Typically, packets are created

with a hop limit of 64. Whenever a router forwards a packet, it

reduces the hop limit by one:

Connections | 29

2a02:c7f:7e26:d300:…

2a03:2880:f003:c07:…

from

to

When is Charles’ birthday?payload

64hop limit

2a02:c7f:7e26:d300:…

2a03:2880:f003:c07:…

from

to

When is Charles’ birthday?payload

hop limit 63

Figure 1.26 A packet’s hop limit is the only element of an IP packet

that routers change while forwarding.

If a packet is going around in circles, its hop limit will eventually

reach zero. If a router receives an IP packet with a hop limit of

zero, it can be discarded. An IP packet containing an error message

should then be transmitted back to the sender by the last router,

stating that the packet could not be delivered because its hop limit

was reached.

Feedback through such error messages helps network adminis-

trators fix critical bugs, and routing loops are not the only ones. In

fact, the Internet Protocol covers how a variety of routing problems

should be dealt with.

Diagnostics

Routers discard IP packets that they are unable to handle. When

this happens, they send an informational message about the inci-

dent to the packet’s sender. The Internet Protocol defines how

routers must format such messages, ensuring they can be under-

stood by any computer. These rules are a subset of the Internet

Protocol called the Internet Control Message Protocol (ICMP).

ICMP assigns error codes to themost common routing problems.

To report a problem, a router sends an IP packet containing the

error code as the message body, formatted according to ICMP rules.

Let’s see some common problems that can be reported using ICMP,

starting with the routing loop problem.

TiME EXCEEDED If a router receives an IP packet with a hop limit of

zero, its travel time is up. The packet either got stuck on a rout-

ing loop, or it was granted an insufficient hop limit by the sender.

30 | COMPUTER SCiENCE UNLEASHED

In such cases, an ICMP message with a time exceeded error code

is sent back. The ICMP message includes the first bytes of the dis-

carded packet to allow the original sender to know which packet

didn’t make it to its destination.

 Ada

 Louis

from

to

Hi there!payload

hop limit 2
from

to

Hi there!payload

hop limit

from

to

Hi there!payload

hop limit

from

to

ICMPprotocol

hop limit

Charles

 Ada

 Louis

1
 Ada

 Louis

0

 Charles

 Ada

64

TIME EXCEEDEDpayload

Figure 1.27 Once a router receives a packet with a hop limit of zero, it

is discarded and an ICMP error message is sent to the packet’s sender.

Notice that the IP packet Charles sends back in fig. 1.27 includes a

protocol field. It’s a two-digit hex number identifying how the

packet’s payload should be interpreted. The latest version of

ICMP was assigned the protocol number 0x3A. All IP packets must

include a protocol number. In the next section, we’ll learn more

about this. For now, let’s explore other common routing problems.

DESTiNATiON UNREACHABLE Sometimes, a router has nowhere to

send a packet. This can happen for many different reasons, for

example if the IP address isn’t in the router’s table of addresses,

and the table doesn’t propose a default next hop. Sometimes, the

next hop happens to be offline.

When the router doesn’t know where to forward the packet, it

returns an ICMP message with the destination unreachable error

code, along with the first bytes of the discarded packet’s content.

PACKET TOO BiG We’ve seen that link layer protocols limit the

amount of data that can be sent in a single frame. Frames from

different types of network links can carry payloads of different sizes.

Connections | 31

The maximum number of payload bytes that can be carried in a

single frame is called its Maximum Transmission Unit (MTU). Dif-

ferent link layer protocols have different MTU values. For Ethernet

frames, the MTU is 1,500. For WiFi frames, it’s 2,305.

If a router receives a larger packet than what the next hop

can handle, it can’t be forwarded as it stands. Instead, the router

returns an ICMP message with the packet too big error code, the

first bytes of the problematic packet, and the MTU of the next hop.

The informed sender can then trim or split the original message

into smaller packets before trying again.

Figure 1.28 “MTU”, courtesy of Daniel Stori (http://turnoff.us).

PARAMETER PROBLEM An IP packet contains a lot of extra informa-

tion alongside its payload. We’ve seen it contains IP addresses, a

hop limit, and a protocol number. It also includes a field indicating

the size of the payload and another specifying the version of the

Internet Protocol it respects. Additional fields are also there to help

routers prioritize important packets.

All these fields must be ordered and formatted according to

strict rules. When a router receives a packet that doesn’t conform

to the protocol, it returns an ICMP message with the parameter

problem error code and the location in the packet where the con-

flict was found. As usual, the ICMP message also contains a few

bytes of the discarded packet for identification purposes.

32 | COMPUTER SCiENCE UNLEASHED

INFORMATiONAL MESSAGES Error reports are not the only messages

ICMP defines to inspect and diagnose faulty computer networks.

Most notably, the echo request and echo reply informational mes-

sage pair is widely utilized. When a computer receives an ICMP

echo request, it returns a packet containing an ICMP echo reply.

This is useful to test if a computer is online. There’s a program

called ping that sends out an ICMP echo request message and mea-

sures how long it takes for the reply to reach you.14 Furthermore,

by sending ICMP echo requests with different initial hop limits, you

can trace the route packets follow to reach their destination.15

1.5 Transport

We’ve seen that computers on the Internet can exchange messages

in IP packet payloads. For example, they can exchange ICMP mes-

sages. However, the true power of the Internet is unleashed when

applications, not computers, start sending each other data in IP

packet payloads.

Computers on a network are often called hosts because they

merely host the applications that utilize the network. For instance,

a smartphone can host applications to simultaneously streammusic,

surf the web, and receive emails.

Generally, an application shares its host with other applications,

but it doesn’t want to go through all incoming IP packets. To solve

this issue, applications ask their hosts to send and receive the pack-

ets on their behalf. That way, the hosts direct each packet’s payload

toward the right application, and each application only receives the

data it should be reading.

This solution requires the data sent by an application to be

accompanied by some extra information. The transport layer spec-

ifies how to format and interpret this extra information within an

IP packet’s payload.

14You can send ICMP packets here: http://code.energy/ping.
15An explanation of how ICMP is used to trace the routes IP packets travel

through can be found at http://code.energy/traceroute.

Connections | 33

User Datagram Protocol

The simplest transport layer protocol is the User Datagram Protocol,

or UDP. Applications that use UDP are assigned port numbers by

their hosts. Exchanged messages are preceded by the port numbers

of both sending and receiving applications.

To communicate via UDP, an application first creates a socket.

A socket is a communication channel between the application and

its host. Suppose Facebook’s server is running a calendar applica-

tion using UDP port number 18. An application running on Ada’s

host can send a message to this hypothetical Facebook application

as follows:

socket ← SOCKET.new(IP, UDP)

message ← "When is Charles' birthday?"

facebook_address ← 2a03:2880:f003:c07:face:b00c::2

app_port ← 18

socket.sendto(message, facebook_address, app_port)

When sending this message, Ada’s host automatically assigns an

unused port number to the newly created socket. Let’s suppose that

it selects the port number 54321. The IP packet that’s transmitted

when sendto() is called will look like this:

hop limit

from

to

protocol

payload

64

Ada (2a02:c7f:7e26:d300::2)

Facebook (2a03:2880:f003:c07:face:b00c::2)

UDP (0x11)

54,321

18

When is Charles’ birthday?

source port

destination port

data

IP PACKET

DATAGRAM

Figure 1.29 When an IP packet’s payload conforms to theUDP format,

it’s called a datagram. Packets carrying datagrams have their protocol

number set to 0x11.

A host can manage thousands of different sockets for its applica-

tions. A single application can even create multiple sockets to oper-

ate many communication channels in parallel. Each socket gets

assigned its own port number by its host.

34 | COMPUTER SCiENCE UNLEASHED

Consider our hypothetical calendar application on Facebook’s

host. Upon receiving Ada’s initial contact, it returns a datagram

with destination port 54,321 in a packet for Ada’s IP address. Ada’s

app waits for this datagram by calling another socket method:

received ← socket.recv()

This halts Ada’s application until a datagram arrives at port 54,321.

Once that happens, the incoming data is stored in received, and

the application resumes.

CLiENT & SERVER For two applications to communicate, one must

be waiting for contact and the other must initiate it. We call the

former a server, and the latter a client. In our example, the Face-

book application is the server and Ada’s application is the client.

However, Ada’s application could also act as a server. It must sim-

ply create a socket, bind it to the port at which it expects to receive

datagrams, and wait for contact:

socket ← Socket.new(IP, UDP)

socket.bind(17)

received ← socket.recv()

You select your server’s port number. If another application in the

host already has a socket bound to that port, bind() throws an

error. When recv() is called, the application halts until a data-

gram bearing your port number arrives. Along with the datagram’s

data, the sender’s IP address and source port number are stored in

the received variable. This way, the application can choose to

reply if it must:

received ← socket.recv()

x ← process_data(received.data)

socket.sendto(x, received.src_ip, received.src_port)

UDP CHECKSUM We’ve seen that every computer and router on a

network can check the integrity of Ethernet and WiFi frames it

receives thanks to their FCS field. A datagram inside an IP packet is

carried on a different frame for each link, therefore the FCS changes

Connections | 35

at every hop. Unfortunately, this means there is no way for a host

receiving a datagram to know if all these FCS have been properly

generated and verified.

To address this issue, each datagram carries its own integrity

checker called the UDP checksum. This checksum is only gen-

erated once and verified once, by its sending and receiving hosts

respectively. Corrupted datagrams are automatically discarded by

the receiving host, so its applications can trust incoming data has

not been accidentally damaged.

UDP LiMiTATiONS A datagram must be short enough to fit inside

the payload of one IP packet. Since the MTU for the bulk of the

Internet is 1,500 bytes, most datagrams are designed to respect that

limit. A heavy message, such as a large photo, must be sent through

multiple IP packets.

Recall that any IP packet may hit an overloaded router in its

path and be dropped. Sometimes, hosts are not even notified when

their packets disappear. Furthermore, packet handling by routers

can cause them to arrive disordered or duplicated. This makes it

difficult to recover data that is split in multiple datagrams.

UDP is best suited for applications whose requests and replies

fit in one datagram each. Ideally, an application should send a

single request at a time, and only send the next datagram once it has

received a reply. If the reply takes too long to arrive, the application

should either give up or try sending the same datagram again.

Datagrams are also suitable to transmit data flows in which

occasional data loss is acceptable, such as when transmitting a live

telephone call, where small audio glitches don’t matter much.

Transmission Control Protocol

The transport layer can do more than match data from IP pack-

ets with their corresponding application sockets. When using the

Transmission Control Protocol (TCP) instead of UDP, hosts will add

even more extra information to IP packet payloads. This allows TCP

to offer functionalities that enhance the reliability of communica-

tions between applications.

36 | COMPUTER SCiENCE UNLEASHED

When using TCP, applications exchange data as if a direct com-

munication line with the other application existed—even though IP

packets have a limited size and routers cannot be trusted to deliver

them. Behind the scenes, hosts split data in shorter chunks and deal

with lost, duplicate, and disordered packets. The application must

simply ask its host to create a connection with another application

and then request for its data to be sent or received.

You can imagine UDP sockets as mailboxes that send and

receive short, one-off messages to and from other boxes, with no

guarantee of delivery. TCP sockets are different. Picture an active

TCP socket as one end of a virtual pipe to another socket. All data

sent through a TCP socket can be trusted to arrive intact. Let’s see

how to build this on top of the unreliable IP packet delivery system.

TCP Segments

With TCP, application data is split and communicated through pay-

loads called segments. Similarly to UDP datagrams, TCP segments

bundle the data with some extra information:

hop limit

Ada (2a02:c7f:7e26:d300::2)

54,321

45,678

source port

destination port

IP PACKET

SEGMENT

payload

protocol

to

from

64

TCP (0x6)

Facebook (2a03:2880:f003:c07:face:b00c::2)

data When is Charles’ birthday?

135,337

765,646

17,520

sequence #

acknowledgement #

window size

Figure 1.30 A simplified representation of a segment. Packets carry‑

ing segments have their protocol number set to 0x6.

Connections | 37

Each of these fields is necessary for TCP to guarantee the integrity

of the full, reassembled data:

PORTNUMBERS A host typically manages multiple TCP channels for

its different applications. Once a segment arrives, there must be a

way for a host to match it with the communication channel to which

it belongs. To this end, segments carry their source and destination

port numbers. A TCP channel of communication can be uniquely

identified by four numbers: the IP addresses of the hosts, and two

port numbers—one chosen by each host.

SEQUENCE NUMBER The sending host splits the application data in

a sequence of small chunks. It assigns a sequence number to each

chunk to indicate how they should be ordered. Each chunk is fit in a

segment with its respective sequence number, and the segments are

transmitted one-by-one on board individual IP packets. If segments

arrive out of order, the receiving host reorders them using their

sequence numbers. If a segment arrives twice, the host will notice

the repeated sequence number and discard the duplicate data.

ACKNOWLEDGMENT NUMBER Communication is bidirectional with

TCP: remote applications must simultaneously exchange segments.

In order to keep track of which segment each host has received, they

each include an acknowledgment number. It corresponds to the

sequence number of the next segment the host expects to receive

from its counterpart. For example, if Charles sends a segment with

the acknowledgment number 44 to Ada, he acknowledges that he

received all her segments until the sequence number 43. If he has

no data to send her, he must still send segments without data for

acknowledgment purposes:

38 | COMPUTER SCiENCE UNLEASHED

434241

seq. #

ack. #

47

20

seq. #

ack. #

19

44

seq. #

ack. #

19

43

seq. #

ack. #

19

42

Ada Charles

INTERNET

seq. #

ack. #

46

20

seq. #

ack. #

45

20

seq. #

ack. #

44

20

44

from Ada

to Charles

from Ada

to Charles

from Ada

to Charles

from Ada

to Charles

from Charles

to Ada

from Charles

to Ada

from Charles

to Ada

Figure 1.31 Charles receives an image from Ada. He has no data for

her, so he sends empty acknowledgment segments. Notice that the

sequence numbers of his segments don’t increase. While sending her

data, Ada signals she is ready to receive Charles’ segment№ 20.

After sending a non-empty segment, the sending host starts a timer

for the receipt of its acknowledgment. If an acknowledgment takes

too long to arrive, the sender assumes the packet was lost, retrans-

mits the unacknowledged segment, and resets the timer.

Hosts monitor the time it takes for acknowledgments to arrive.

When the time increases, it’s a sign that the network is getting con-

gested, so hosts reduce the rate at which they send out segments.

When acknowledgment times decrease, it’s a sign that more band-

width is available, so hosts send segments at a higher rate. This

is called congestion control, and it ensures network bandwidth is

appropriately utilized.

WiNDOWSiZE If a host receives too many segments at once, its com-

putational resources can get overwhelmed. To ensure they are

always capable of processing incoming data, hosts include a win-

dow size alongside the acknowledgment number. It indicates the

number of bytes of data they are willing to receive beyond the last

segment they acknowledged.

Connections | 39

Senders suspend their transmission of unacknowledged seg-

ments whenever their total size reaches the window size of their

counterpart. This is called flow control, and it ensures the com-

putational capabilities of each host isn’t exceeded. Using TCP,

applications don’t have to worry about congestion control and flow

control, as those are taken care of by their hosts. On the other hand,

applications using UDP are responsible for adapting the sending

rate to the network bandwidth and to the computational resources

of their counterparts.

TCP CHECKSUM Similarly to UDP datagrams, TCP segments include

a checksum. It is added by the sending host and verified by the

receiving host. If a corrupted segment is received, it is discarded

without being acknowledged. This ensures all chunks of data even-

tually reach their destination free of errors.

TCP Connection

TCP communications are always conducted through a pair of seg-

ment threads called a TCP connection, as seen on Figure 1.31.

Before two applications can start exchanging data through a TCP

connection, their hosts must be able to recognize and sort the seg-

ments of that connection. They do so by remembering which port

numbers correspond to which thread. Each host also chooses an

initial sequence number to start its side of the connection, and it

acknowledges the initial sequence number of its counterpart.

For these reasons, establishing a TCP connection requires the

exchange of three segments between the client and the server.

The first two segments carry a special SYN flag16 that serves to

synchronize the sequence and acknowledgment numbers of the

threads. Additionally, an ACK flag is carried by segments whose

acknowledgment numbers are valid and synchronized. The third

segment can already begin carrying application data:

16Fields that are encoded by a one or zero are called flags.

Ada Charles

source port

dest. port

seq. #

ack. #

SYN

ACK

61311

20

41

-

True

False

from Ada

to Charles

Hey Charles, can we connect?
My port number is 61,311.

I’ll start counting from #41.

from Charles

to Ada

source port

dest. port

seq. #

ack. #

SYN

ACK

61311

20

15

42

True

True

Ada Charles

Sure Ada, let’s connect!

I’m ready for #42.

I’ll start counting from #15.

Ada Charles

src. 61311

dest. 20

seq. # 42

ack. # 16

SYN False

ACK True

from Ada

to Charles

Cool! Ready for #16.
Here’s a picture.

src. 61311

dst. 20

seq. # 43

ack. # 16

SYN False

ACK True

from Ada

to Charles

src. 61311

dest. 20

seq. # 44

ack. # 16

SYN False

ACK True

from Ada

to Charles

src. 61311

dest. 20

seq. # 45

ack. # 16

SYN False

ACK True

from Ada

to Charles

Figure 1.32 Hosts initiate TCP connections with random sequence

numbers. We consider the connection is fully established from the

moment the third segment is received, as both hosts obtained an

acknowledgment of their sequence number.

Connections | 41

Before the segment exchange in Figure 1.32 takes place, Charles has

to ask his host to expect incoming TCP connection requests at port

number 20. When Ada requests her host to start a new connection

with Charles on port 20, Ada’s host picks a port number at random

to assign the connection—here, the port 61,311 was chosen.

As long as a connection is active, hosts keep track of sequence

numbers, acknowledgment numbers, and window sizes. They time

acknowledgments from their counterparts and decide when to send

the next segments accordingly. The application remains blissfully

unaware of all this work, as it simply calls TCP socket methods to

connect, send, and receive.

TCP Sockets

TCP sockets are either active or passive. Only active sockets can

be bound to a connection. When TCP sockets are created, they’re

active by default. Here’s how a client starts a connection:

active_socket ← Socket.new(IP, TCP)

port_number ← 80

server_ip ← 2a03:2880:f003:c07:face:b00c::2

active_socket.connect(server_ip, port_number)

active_socket.send("When is Charles' birthday?")

The client must simply indicate the IP address of the server-host

and the port number the server is listening to. All the procedures

to start and maintain the TCP connection are performed by the host

behind the scenes. After connect() ran successfully, send() and

recv() can be called to exchange data.

In order to expect and accept connection requests at a given

port number, a passive socket must be used. A socket is made pas-

sive after it is bound to a port number and its listen() method

is called. Here is how a server waits for a connection on port 80:

server_socket ← Socket.new(IP, TCP)

server_socket.bind(80)

server_socket.listen()

active_socket ← server_socket.accept()

The server selects its port number. If another application already

has a socket bound to the same port, bind() throws an error.

42 | COMPUTER SCiENCE UNLEASHED

When accept() is called, the server halts until a new connection

request comes in, at which point a new TCP connection is created.

The new connection is bound to a freshly created active socket. The

original passive socket can be used to accept more connections to

other hosts. The newly created active socket can be used to com-

municate with the client by calling send() and recv() on it.

Often, servers will keep running accept() in a loop to estab-

lish many TCP connections with multiple clients and communicate

with all of them simultaneously. That’s how a web server is able

to serve thousands, or even millions of different client applications

at the same time.

This was a very simplified overview of how TCP connections

work. There are numerous edge cases we haven’t discussed. Seg-

ments carry extra flags to indicate urgency, error states, network

congestion, connection termination, and more. Although TCP was

originally designed shortly after IP in 1974, its inner workings are

still changing to this day—for example to improve congestion han-

dling and to optimize bandwidth usage.

If you’re not specialized in networking, TCP sockets allows you

to remain blissfully unaware of all these details. They are an exam-

ple of sound systems engineering: they provide a simple interface

to carry out complicated operations with little required knowledge

of the underlying intricacies.

Conclusion

The Internet is one of mankind’s greatest technological achieve-

ments, and it is the result of a tremendous amount of engineering

and international cooperation. Computer programs virtually any-

where in the world can faultlessly and effortlessly communicate

with each other, without the need for central coordination.

Such communications utilize physical and virtual connections

at different levels of hardware and software. When applications

communicate, it is therefore natural for their data to be encapsu-

lated in several layers of packaging:

Connections | 43

10 4C D8 E4 AC CE

to (MAC) from (MAC)

80 BB EB 41 64 61 packet…

Ethernet frame,

WiFi frame…

LINK

LAYER

INTERNET

LAYER

2a02:c7f:7e

26:d300::2

to (IP) from (IP)

2a03:2880:f003:c

07:face:b00c::2

datagram,

segment…

TRANSPORT

LAYER to (port) from (port)

80 …58942

…
APPLICATION

LAYER

IP…

type

UDP,

TCP…

protocol

payload

payload

data

LiNK LAYER Antennas, cables, and other equipment for manipulat-

ing electromagnetic waves allow pairs of computers to beam signals

to each other. Link layer protocols allow these pairs of computers to

harness these signals in order to exchange data in frames. Among

other things, each frame contains the MAC addresses of its sender

and recipient, a payload, and a field indicating the rules for han-

dling the payload in the internet layer.

INTERNET LAYER Special computers called routers can connect dif-

ferent networks into larger networks, such as the Internet. Thanks

to the Internet Protocol, payloads packaged as IP packets can hop

from one frame to the next and thus travel between computers that

don’t share a direct physical link. Among other things, each packet

contains the IP addresses of its origin and final recipient, a pay-

load, and a field indicating the rules for handling that payload in

the transport layer.

44 | COMPUTER SCiENCE UNLEASHED

TRANSPORT LAYER Distant computers host applications that wish to

communicate. Thanks to protocols such as UDP and TCP, multiple

payloads expressed as datagrams or segments can form streams of

data between distant applications. Among other things, each data-

gram or segment contains a chunk of application data along with

the source and destination ports through which that data is flowing.

Both TCP and UDP are used in different ways depending on the

nature of the communications between applications. In the next

chapter, we will cover the APPLiCATiON LAYER: how we harness IP,

TCP, and UDP to build the many modern Internet services we use

every day, such as email and the World Wide Web.

This layered architecture for networking has been around for

a while. In 1975, IP packets carrying TCP payloads were already

traveling internationally between computers in Stanford and Lon-

don. Protocols evolve—IP received an upgrade in 2012, and TCP

has been tweaked many times—but the fundamental mechanics of

the Internet have not changed for decades.

In this chapter, we covered essential networking concepts that

will likely keep us connected for many more years. Let’s now learn

how we can harness Internet connectivity to power digital services

such as electronic mail and the World Wide Web.

Reference

• Warriors of the Net

– Watch it at http://code.energy/net-warriors

• Introduction to Networking, by Charles Severance

– Get it at http://code.energy/severance

CHAPTER 2

Communication

The Internet works because

a lot of people cooperate

to do things together.

—Jon Postel

O
ur voice enables us to send sounds to others, but this

isn’t enough to communicate. For two people to exchange

thoughts through speech, they must share a common lan-

guage. Likewise, transport protocols enable data to flow between

applications, but it isn’t enough for applications to understand each

other and work together. In addition to connections, applications

need communication rules.

Many communication rules that emerged during the early days

of the Internet are still widely used by applications today. If you

want your applications to participate in the Internet, you need to

get acquainted with some of them. In this chapter, you’ll learn to:

Assign names to online addresses,

Synchronize clocks to universal time,

Access and use distant computers,

Send and receive mail electronically,

Browse the Web of documents and services.

Each independent set of communication rules forms a protocol, and

the collection of all such protocols constitutes the application layer.

The first application layer protocol we’ll see works like an address

book, which is directly or indirectly consulted by nearly every appli-

cation that connects to the Internet.

45

46 | COMPUTER SCiENCE UNLEASHED

2.1 Names

We can only send an IP packet to a host if we know its IP address.

Yet, we never evenmemorize IP addresses of mainstream hosts such

as Google’s, Amazon’s, or Facebook’s.

Engineers realized it’s impractical to refer to hosts using big

numbers, so they created the Domain Name System, or DNS: a way

to associate easy to read names with IP addresses. Thanks to DNS,

we can contact hosts using names like google.com, amazon.com,

or facebook.com.

When you type facebook.com in a web browser, it uses DNS to

find an IP address linked to that name. It can then request the web-

site by sending IP packets to that address. If you had directly typed

Facebook’s IP address in the browser, the DNS registry wouldn’t

have been consulted; yet the same web page would still show.1

DNS depends on the cooperation of many computers across the

Internet. These computers communicate according to the DNS pro-

tocol to maintain the name registry. Most Internet applications,

such as web browsers and email clients, use DNS to find the IP

addresses of the hosts they have to connect with. But before we

can explore the rules of this protocol, let’s learn some underpinning

concepts—starting with the hierarchical structure of the names.

Domains

Names in DNS are called domain names, or domains. They’re

made of text labels separated by dots. Labels can use the 26 letters

from a to z, digits from 0 to 9, and the hyphen (-). For example,

book-2.code.energy is a domain with three labels.

Dots indicate hierarchical subdomains. Subdomains are domains

overseen by a shorter parent domain: book-2.code.energy is a

subdomain of code.energy. Likewise, code.energy is a subdo-

main of the single-label domain energy. Note that domains are

case-insensitive: code.energy and coDE.enERgy are the same.

Every domain has an owner. Owners can create subdomains of

their own domains. Ownership of a subdomain is transferable at

1See for yourself, visit thewebsite http://[2a03:2880:f003:c07:face:b00c::2].

Communication | 47

anytime by the parent domain owner. For example, Verisign is an

American company that owns both com and net. In 1997, at the

request of a small team of nerds, Verisign created google.com and

granted them ownership over it.

Single-label domains, such as com, net, and energy, are called

Top Level Domains, or TLDs. Due to the way it was designed, DNS

is more efficient when there’s a limited number of TLDs. For this

reason, creating new TLDs is difficult by design. Usually, when indi-

viduals and organizations want a domain, they request a subdomain

from the owner of an existing TLD, most notably com.2

Nonetheless, many powerful organizations possess their own

TLDs. In 2014, Google was granted the google TLD.3 In 2016,

Motorola was granted the moto TLD. More critically, Amazon is

trying to obtain the amazon TLD, but the governments of Brazil

and Peru oppose the venture as they consider the name belongs

first and foremost to their rainforest.

ICANN

In order for domain names to be universally understood, there must

be a way for everyone to agree on who has ownership of each TLD.

This requires consensual processes for the creation of TLDs and for

the resolution of conflicts over their ownership. To this end, it

was decided that an American non-profit organization, the Internet

Corporation for Assigned Names and Numbers (ICANN),4 has ulti-

mate authority over TLDs.

When ICANN authorizes the creation of a TLD, it often requires

the new owner to allow the general public to register subdomains.

That is the case for most of the existing TLDs, including com, net,

and energy. In order for Verisign to maintain their ownership of

com, they are required by ICANN to accept requests for the creation

of .com subdomains by anyone.

Sometimes, ICANN allows owners of TLDs to use them for

exclusive interests. For instance, gov and mil are controlled by the

2You can find the list of TLDs at http://code.energy/tlds.
3Visit the website http://about.google to see for yourself.
4ICANN controls IANA, the organization that allocates IP address prefixes.

48 | COMPUTER SCiENCE UNLEASHED

US government. They only create domains for American govern-

ment bodies, such as nasa.gov and spaceforce.mil. Likewise,

the owner of edu only allows American educational institutions

to have .edu domains, such as mit.edu and caltech.edu; and

Google uses their TLD exclusively for company affairs, such as

grow.google and blog.google.

In addition to general-use TLDs and exclusive-use TLDs, ICANN

assigns two-letter country-code TLDs and cedes their control to

their respective governments. Colombia has co, the United States

has us, and the British Indian Ocean Territory has io.5 Occa-

sionally, ICANN creates TLDs for famous geographical areas. For

instance, rio was given to the Rio de Janeiro city council.

Name Servers

DNS records link data to domains. A domain can have many

records, each binding a chunk of data to the domain. All records

have a code that indicates the type of information they carry. For

example, AAAA records link a domain to an IP address:6

sprint.net. AAAA 2600::

All DNS records must be stored on name servers: special hosts

that will share their records with anyone on the Internet at any

time. A domain’s owner must grant at least two name servers with

the authority to store its DNS records. Domain owners may either

provide these servers themselves or hire third parties to do so.

Ownership of domains is enacted through DNS records. For

example, recall Verisign owns com. In principle, Verisign’s name

servers would contain all records for .com domains, including

google.com. However, this is not the case, because Verisign keeps

the following records in its name servers:

5The TLDs are assigned following ISO 3166-1 alpha-2 country codes, with a

few exceptions such as the United Kingdom. Their country code is GB but they

were given the uk domain.
6Notice the sprint.net. domain. In official records, all domains end with

a dot. In everyday use, the final dot is most often omitted for convenience.

Communication | 49

google.com. NS ns1.google.com.

google.com. NS ns2.google.com.

ns1.google.com. AAAA 2001:4860:4802:32::a

ns2.google.com. AAAA 2001:4860:4802:34::a

An NS record states that the given Name Server has authority over

a domain. With the above records, Verisign delegates the responsi-

bility to store all records associated with google.com. In effect, it

hands control of the domain to Google, who hosts the cited name

servers. This gives Google the authority to set DNS records for

google.com in their own name servers.

ROOT SERVERS Some special name servers, called root servers, are

appointed by ICANN to have the authority to store DNS records of

TLDs. New TLDs are created when ICANN asks NS records to be

added to these servers. There are 13 root servers—ICANN makes

their IP addresses well known. The University of Maryland, NASA,

and the US Army are some of the entities that host a root server.

Querying

Name servers have two functions: store records and answer queries.

Most Internet applications rely on them. Your web browser, for

example, only works if it has a way to discover the IP addresses of

the websites you wish to reach.

Name servers expect queries on UDP port 53. Typically, a DNS

query message and its reply fit in one datagram. To illustrate how

it works, let’s query name servers using the dig7 program. It sends

a datagram to the IP address we specify, containing a query that

conforms to the DNS protocol. Dig is invoked from the command

line as follows:

dig @[address] [domain] [type]

7The dig program comes pre-installed on Linux and MacOS terminal emu-

lators. If you don’t have access to a command-line interface, use http://code.

energy/dig. If you don’t know what the command line is, don’t worry! We will

learn more about it later in this chapter.

50 | COMPUTER SCiENCE UNLEASHED

This sends a datagram to the given address on UDP port 53, ask-

ing for records of a specific type, associated with the given domain.

When a datagram arrives in response, dig decodes it and displays

the records in plain text.

Suppose we want to connect with icmc.usp.br, but we only

know the IP address of NASA’s root server: 2001:500:a8::e.

Let’s ask NASAwhat’s the name server responsible for icmc.usp.br:

dig @2001:500:a8::e icmc.usp.br. NS

The root server replies with the following records:

br. NS a.dns.br.

a.dns.br. AAAA 2001:12f8:6::10

We can immediately see that NASA doesn’t have the NS records for

icmc.usp.br. In fact, root servers shouldn’t even be expected to

store these records: br is a country-code TLD under the authority

of the Brazilian government. The root server helps us by indicating

the IP address of the Brazilian server responsible for br. Let’s take

this advice and send our query there:

dig @2001:12f8:6::10 icmc.usp.br. NS

This time, we receive the specific records we asked for:

icmc.usp.br. NS c.dns.usp.br.

c.dns.usp.br. AAAA 2001:12d0::8

We can now ask for the AAAA record associated with icmc.usp.br:

dig @2001:12d0::8 icmc.usp.br. AAAA

And at last, we receive the IP address we wanted:

icmc.usp.br. AAAA 2001:12d0:2080::231:6

If our original query was a subdomain of icmc.usp.br, we may

have needed to iterate our query for an NS record once more. This

is called iterative querying, and it allows you to look up any DNS

information starting with any single root server’s IP address.

Communication | 51

Recursive Querying

As of 2020, it’s estimated that a few million DNS queries are made

every second. If hosts only performed iterative querying, it would

be extremely difficult for name servers to handle all those requests.

Fortunately, most DNS queries are handled in a different way—one

that minimizes the load on the name servers.

Some name servers, often called DNS servers, allow you to con-

sult any DNS record through a single query. They are typically

maintained by large organizations with a lot of throughput, such

as Internet Service Providers. An ISP will almost always inform

customer routers of its DNS server’s IP address. Customer routers

will often use that server for all their DNS queries.

Today, most home routers are capable of running their own

DNS server. Typically, personal computers are configured to use

their router as their default DNS server. If you invoke dig without

an @ argument, your computer will probably query your router. In

turn, your router will likely forward the query to the ISP’s DNS

server. Try it with the following command:

dig icmc.usp.br. AAAA

This is much faster: your DNS server is closer to you than any other

name server. Furthermore, a single query gets you the DNS records

you want. As the client, you don’t even know (or care) whether

your DNS server queried another DNS server or fetched the records

directly from the name servers with authority over them.

We call this process recursive querying, because the client’s

single query propagates up a chain of DNS servers until the answer

is found. Its advantage lies in caching: servers keeping past query

results in their local storage, or cache. For instance, the first time a

DNS server is queried about any .io domain, it asks a root server

for io’s NS records; however, the next time a query for a .io

domain is received, it retrieves the records from its cache instead

of wasting the root server’s time.

Since ICANN restricts the number of TLDs, it is easy for ISPs

to cache all of them on their DNS servers, and therefore to only

query the root servers sporadically. This design ensures that the

root servers do not get overloaded.

52 | COMPUTER SCiENCE UNLEASHED

On the flip side, caching slows down the propagation of changes

around the network: DNS servers only update their cached NS

records from time to time. Specifically, the Time To Live (TTL)

value of a record indicates how long it may be stored in cache.

In previous examples, we’ve been omitting the TTL values for

simplicity, but every record has one. It is typically displayed before

the record type:

br. 149836 NS a.dns.br.

This record has a TTL value of 149,836, indicating that it may be

cached for that many seconds. About 41 hours after this record is

retrieved by a DNS server, it must be dropped from its cache. Set-

ting a low TTL value makes future changes to the record propagate

faster. However, higher TTL values allows servers to waste less

resources on refreshing cache.

Types of Records

We’ve seen two DNS record types: AAAA, that links IP addresses to

domains; and NS, that grants name servers authority over domains.

Many other record types exist. Let’s see the most common ones.

ADDRESS When DNS was invented in 1983, the A record type was

used for IP addresses. In 2012, IP was upgraded and addresses

became four times longer. The AAAA record type stores these new

addresses for legacy IP to keep working unaffected as networks

upgrade. Domains can have both records, for instance:

one.one.one.one. AAAA 2606:4700:4700::1111

one.one.one.one. A 1.1.1.1

If you have an outdated connection that only supports IPv4, you can

query for A records and send IPv4 packets to the retrieved address

instead of IPv6 packets.

TLDs can’t have A or AAAA records. This is the reason why there

is no website at http://com/ or http://google/. Single-label names

are only used for addressing within Local Area Networks. The most

common one is localhost, and it always points to a computer’s

own network interface.

Communication | 53

MAiL EXCHANGE If you want to give Code Energy feedback on this

book, you can write an email to hi@code.energy.8 But how would

your email system knowwhere to dispatch your email for it to reach

our servers?

Similarly to theWeb, email depends on DNS. An MX record spec-

ifies a host responsible for receiving email for a domain. In order

to send an email to maria@icmc.usp.br, the first step is to look up

the MX records for icmc.usp.br. Let’s dig:

dig icmc.usp.br. MX

Each MX record includes a host name and a priority number:

icmc.usp.br. MX 1 aspmx.l.google.com.

icmc.usp.br. MX 5 alt1.aspmx.l.google.com.

icmc.usp.br. MX 5 alt2.aspmx.l.google.com.

icmc.usp.br. MX 10 alt3.aspmx.l.google.com.

These records indicate that the owner of icmc.usp.br chose

Google to receive email on their behalf. You can connect to any of

those hosts to send an email to icmc.usp.br, but you should favor

the one with the lowest priority number.

As for A and AAAA records, TLDs cannot have MX records. That’s

why there’s no such email address as ada@io or larry@google.

CANONiCAL NAME In the early days of the Web, people started to

configure servers in their organizations for processing requests

for web pages. It was usual to name such a server “www”, so

http://www.example.com/ became the expected web address for

example.com. More recently, many are dropping the “www” part

from their web addresses. A special CNAME record allow us to

define a subdomain that’s merely an alias:

www.code.energy. CNAME code.energy.

It instructs anyone trying to retrieve a record for www.code.energy

to instead consider the records from code.energy.

8Do it!

54 | COMPUTER SCiENCE UNLEASHED

TEXT It’s possible to link arbitrary text to a domain using TXT

records. This is often used for proving ownership of a domain, but

you can use it for anything else. We left a special message for you

in TXT records associated with enigma.code.energy. Will you be

able to find the message? Remember, you can use dig to query

any type of record that’s linked to any domain.

Reverse DNS

DNS is most used to get an IP address from a given domain name.

However, it also works in reverse: it can find which domain is asso-

ciated with a given IP address. The trick is to re-express the IP

address as a subdomain of ICANN’s special TLD arpa. For example,

icmc.usp.br. AAAA 2001:12d0:2080::231:6

…becomes:

.0.8.2.0.d.2.1.1.0.0.2.ip6.arpa. PTR icmc.usp.br.

reversed IP address

(32 hex digits)

Thanks to ICANN, there is a unique arpa subdomain corresponding

to every IP address. A PTR record may be set for that subdomain

in order to associate it with a domain name.

Authority over arpa belongs to IANA. When an IP address block

is given to an organization, the organization also receives authority

over the corresponding arpa subdomains. When a computer is allo-

cated an IP address and a domain name, it’s good practice to record

the pair in a PTR record using the IP address’s arpa subdomain.

With dig, you can query PTR records corresponding to any IP

address using the -x argument. Try it:

dig -x 2600::

Reverse DNS is useful for confirming where an IP packet comes

from. For instance, suppose you receive an IP packet carrying a

message from apple.com. If the reverse DNS of the sender’s IP

address isn’t an Apple domain, something is fishy!

Communication | 55

That’s because those who have the authority to set DNS records

for arpa subdomains are careful. Most ISPs don’t even allow their

clients to set records on the arpa subdomains that correspond to

their IP addresses.

Domain Registration

DNS doesn’t just replace big numbers with names—it gives people

the autonomy to reconfigure their networks. Think of a computer

hosting a website. If it relocates, it receives a new IP address. The

DNS records of the website can be updated to the new address such

that visitors of the website won’t notice the change!

This requires DNS to be universal. It must be easy, secure and

affordable for anyone to own a domain. There are several rules that

guarantee this. ICANN is liberal with exclusive-use TLDs: Google

and IBM use google and ibm as they want. Also, ICANN allows

each national government to set the rules for its country-code TLD.

However, ICANN imposes strict rules on general-use TLDs meant

for the public, such as com, org, rocks and energy.

ICANN calls an entity that has control of one or more TLDs a

registry, or a Network Information Center (NIC). As we’ve seen, the

registry for com is Verisign. ICANN makes it mandatory for general-

use TLD registries to accept domain registrations by anyone. ICANN

also stipulates that a registry cannot directly receive any domain

registration applications.

In an effort to bolster competition and maximize the reach of

DNS, ICANN stipulates that domain registration applications for

general-use TLDs must be processed by companies called regis-

trars. As of 2020, the largest registrar is GoDaddy: it has processed

dozens of millions of domain registrations.

Registrars must be approved by ICANN. ICANN sets the maxi-

mum and minimum fees that registries and registrars may charge

for a domain registration. Each time a domain is registered, part of

the fee is paid to ICANN.9 Technically, the domain is still owned by

ICANN and is leased for a maximum of 10 years. However, since

the lease is renewable, we generally refer to the lessee as the owner.

9As of 2020, ICANN charges $0.18 per year and per domain.

56 | COMPUTER SCiENCE UNLEASHED

WHOIS Originally, ICANN obliged registrars to disclose the name

and contact information of domain owners in a public directory

called WHOIS. This directory functions through a different Inter-

net protocol, independent of DNS. The directory can be consulted

using the whois program on the command line:10

whois code.energy

Thanks to the advance of data protection norms and regulations,

ICANN now allows registrars to redact the identity of domain own-

ers. In 2012, ICANN has vowed to “reinvent WHOIS”; but as of

2020, the process is still ongoing.

DNS HOSTiNG In theory, when registering a domain, you should

provide the names and IP addresses of your name servers. This

information is forwarded from your registrar to the registry for

inclusion in the TLD name servers. However, most people don’t

even know what a name server is. To make things easier, many

registrars offer a DNS hosting service: they use their own name

servers on your behalf, and allow you to manage your DNS records

through a web interface.

NAMES MARKET We live in the times of a booming online economy.

Domain names are seen as virtual real estate and are sometimes

sold for millions. For example, in 2019, GoDaddy brokered the

sale of voice.com for $30 million. The .com domain names are

so valuable that all possible four-letter combinations are taken.

Now that you know howDNSworks, we will refer to hosts using

their domain names. Whenever you see a domain name used as the

address of a host, remember that a DNS query is necessary to find

the IP address and send the IP packet.

10If you don’t have access to a command-line interface, consult WHOIS here:

http://code.energy/whois.

Communication | 57

2.2 Time

Thousands of years ago, humans started figuring out how astron-

omy and mechanics could help quantify time. Ancient civilizations

developed different lunar and solar calendars to track seasons and

invented devices such as sundials and water clocks to track time

within the day or night.11

As Roman legions professionalized in the 1st century BC, they

increasingly kept time in order to harness their full military poten-

tial. Timekeeping allowed them to coordinate precise maneuvers

and deliver devastating blows to their enemies. They also systemati-

cally recorded the time at which intelligence was collected by scouts

and messengers so they could correlate events and gain insights into

enemy tactics.

Today, we rely heavily on timekeeping as trucks, trains, ships

and planes must coordinate to carry unfathomable amounts of

goods around the world. We keep logs, sometimes every time a

postal package changes hands. If everyone agrees on what time

it is, we can correlate events so incidents and their consequences

can be monitored, and people can be held accountable if they do

something wrong.

In a similar way, timekeeping allows interconnected computers

to form powerful teams. If distant computers can agree on what

time it is, they can coordinate their actions at speeds that humans

can’t achieve. For example, financial transactions between parties

on different continents can be confirmed within seconds.

Computers also store logs of each of their actions with a record

of the exact time it occurred, called a timestamp. Agreeing on

time allows interconnected computers to chronologically order past

actions, records, and messages and therefore to correlate events.

This mostly helps programmers find bugs, but can also, for example,

help security specialists detect and track malicious activity.

Sharing time allows coordination and event correlation on epic

scales. This begs the question: how do interconnected humans and

computers even agree on what time it is?

11Sundials indicate the time when they’re exposed to sunlight by casting a

shadow on a marked surface. Water clocks track elapsed time from the gradual

flow of water from one container to another.

58 | COMPUTER SCiENCE UNLEASHED

Coordinated Universal Time

During the Age of Exploration, European sailors perfected their nav-

igation techniques based on celestial observations and timekeeping.

By the 18th century, they could precisely pinpoint their location

at sea by using tables published by the Royal Greenwich Observa-

tory in London. This worked as long as they knew exactly what

time it was according to the observatory, so ships kept mechanical

clocks12 synchronized with Greenwich. As these reliable sources of

time sailed around the world, Greenwich time gradually became

the universal time standard.

A couple of centuries later, we switched frommechanical clocks

to quartz clocks and atomic clocks13 for more precision. Today,

hundreds of atomic clocks track universal time. The Coordinated

Universal Time, or UTC,14 is the average of the measurements from

these clocks, and it’s currently our best standard for time. Thanks to

advances in astronomy and planetary sciences, we can even account

for Earth’s slowing rotation: we occasionally add leap seconds to

UTC so it stays synchronized with solar time in London.

All around the world, official time is obtained by adding an

offset to UTC. The offset can change seasonally. For instance, the

UK is an hour ahead of UTC half the year because of daylight saving

time. Tokyo is nine hours ahead of UTC, year-round.

TiMEZONES Regions where the official time follows the same UTC

offset form a timezone. IANA keeps track of the ever-changing

timezones and their offsets and publishes them in the tz database.

For instance, a big chunk of the eastern United States, from Miami

to New York, shares the same UTC offset. In the tz database, this

timezone has the code America/New_York. Britain is entirely in

the Europe/London timezone, and Japan is in Asia/Tokyo.

12Mechanical clocks typically store energy with a weight or spring, and have

a clever mechanism that lets the energy escape at constant time intervals.
13Quartz clocks use clever electronics and a special crystal to create vibrations

at a precise and predetermined frequency. Atomic clocks are similar to quartz

clocks, but they continuously sync the vibrations to atomic physics phenomena.
14English-speaking countries originally proposed the acronym CUT, while

French speaking countries preferred TUC, for temps universel coordonné. The inter-

nationally recognized UTC is a compromise between the two.

Communication | 59

Figure 2.1 Rough outline of the world’s timezones as of 2020.

Computers track time in UTC, but typically display it according to

their timezones. For example, an email sent to Tokyo from New

York will carry a creation timestamp in UTC. This timestamp will

be displayed differently for sender and receiver, according to the

timezone configuration of their computers. Moving forward, when

we refer to time, we mean UTC.

Network Time Protocol

Humans can aspire to British punctuality if their watches are correct

down to the second. Computers however, work faster and their

clocks need more precision. For example, a group of computers

can log hundreds of records per second. In order to keep these

records in chronological order, we must synchronize clocks down

to the millisecond.

Adjusting clocks to such minute time scales is not an easy task.

A naive approach would be to send amessage on the Internet asking

for the time from someone who knows it, and setting the clock to

the timestamp received in response. However, this doesn’t work: IP

packets transit for undetermined durations. The time we received

from a remote computer inevitably arrived late.

However, with some extra data, we can approximate how long

a packet took to travel through the Internet. This duration can then

60 | COMPUTER SCiENCE UNLEASHED

be added to the indicated timestamp before we use it to adjust our

clock. The Network Time Protocol (NTP) is the widely used stan-

dard for synchronizing clocks using this principle.

NTP timestamps are expressed in seconds since midnight on

January 1st, 1900. For example, midnight on January 1st of the

year 2000 has the timestamp 3,155,673,600. The number can have

a fractional part, so it can capture time with very fine precision.

NTP servers expect incoming messages at UDP port 123. An NTP

message exchange works as follows:

C

315.27

originate time

What’s your time?

Mine is 315.27.

Your time was 315.27.

I received it at 316.61.

My time is 319.32.

315

316

317

318

319

320

315

316

317

318

319

320

319.32

transmit time

316.61

receive time

315.27

originate time

A

B

D {time offset

Figure 2.2 A client asks a server for the time using NTP. For simplicity,

let’s pretend we are in the year 1900, so that the timestamps are small

numbers. The time kept by either computer runs from top to bottom.

Communication | 61

The exchange starts when the client sends its time query. This mes-

sage contains the time it was sent, according to the client’s clock

(time A). The server registers the time the message arrives, accord-

ing to the server’s clock (time B). When the server replies, it sends

a message containing three times: time A, time B, and its response

time (C). The client receives these times and confirms time A is the

same it had previously sent. The client also notes when the reply

arrives according to its own clock (time D).

On Figure 2.2, let’s assume time D is 319.42. Knowing times

A, B, C and D, the client can calculate the time the IP packets took

to travel through the Internet:

travel time = client roundtrip time− server processing time

= D− A− (C− B)

= 319.42− 315.27− (319.32− 316.61)

= 4.15− 2.71

= 1.44.

It took 1.44 seconds for the messages to go from client to server and

back. We estimate that it took half that time for the packet to travel

from server to client: 0.72 seconds. The client should have received

the reply 0.72 seconds after time C, at 319.32 + 0.72 = 320.04.
However, the client received the message when its clock was only

at 319.42. This means the client’s clock is running late compared

to the server by about 320.04 − 319.42 = 0.62 seconds.

NTP is conservative: it mandates clients adjust their clocks by

only half the estimated offset. So our client pushes its clock 0.31

seconds forward. Every ten minutes, our client sends a new query

and adjusts its clock accordingly. If packet travel times between

client and server are identical in both directions, the client’s clock

will eventually synchronize with the server’s clock. On typical Inter-

net links, NTP synchronizes clocks with errors ranging in the tens

of milliseconds.

62 | COMPUTER SCiENCE UNLEASHED

Time Servers

You might be wondering where NTP servers obtain their time from.

Most NTP servers actually synchronize to other NTP servers on the

Internet: there’s no problem running server and client NTP pro-

grams simultaneously.

However, this can lead to problems. Suppose Ada gets her time

from Andrew, and Andrew gets his time from Charles, and Charles

gets his time from Ada; none of the three will have a time source

calibrated to UTC. Even if all of their clocks were initially correct,

imprecisions would build up over time and cause them to drift away

from universal time.

To prevent this problem, NTP servers are organized in a hierar-

chy called clock strata. A server that is directly linked to a reliable

time source, such as an atomic clock or GPS receiver, is said to

be stratum 1. Then, computers that synchronize with a stratum 1

server are said to be stratum 2. If a computer gets the time from a

stratum 2 server, it becomes stratum 3, and so on. NTP rules that

servers must report their stratumwhen answering time queries, and

that the bottom-most level of the hierarchy is stratum 15.

This allows computers to avoid circular time-telling: if Charles

is stratum 2, and tells the time to Andrew, Andrew becomes stra-

tum 3. If Andrew tells it to Ada, she becomes stratum 4. If ever Ada

tells Charles the time, he will know he must ignore it because he

is stratum 2 and she is stratum 4. He must find a stratum 1 server

to synchronize with.

There are many public NTP servers that answer queries from

anyone. Apple computers are pre-configured to synchronize their

clocks with time.apple.com, which is a stratum 2 server. Govern-

ments and large organizations often provide public NTP servers.

For example, the United States government operates time.nist.gov,

a stratum 1 public server.

NTP was created in 1985 and is one of the oldest protocols of

the Internet. Since almost every computer runs an NTP client, peo-

ple often take it for granted that their computers naturally know

the time. You can check your clock at http://time.gov/. Odds are,

it will be off by less than a second. Next, let’s explore an Internet

protocol that’s even older than NTP.

Communication | 63

2.3 Access

During the 19th century, human operators had to decode the elec-

trical signals of the telegraph into language and vice versa. At the

turn of the century, their job wasmade easier by a new device called

the teletype. These machines were hooked to telegraph wires and

incorporated a mechanical typewriter that could print incoming

telegraphed characters automatically.

Teletypes also had a keyboard, so characters typed by their oper-

ator would be automatically telegraphed out through the wire. This

allowed people to chat over long distances: messages typed into

one machine would be printed by the second machine on the other

side of the line.

Terminals

When electronic computers were first commercialized in the 1950s,

they had no screens. In order to obtain feedback from their new

machines, people had to link their input/output wires to teletypes.

That way, they could feed data and instructions to the computer by

typing, and their computer’s response was printed back in real time.

These teletypes that allow us to interface with computers through

text are called terminals.

The computer program that processes information and instruc-

tions flowing to and from a terminal is called a shell. In order to

communicate with humans, it operates a Command-Line Interface,

or CLI. As a terminal user types a command into the CLI, the shell

acknowledges each character by asking the terminal to print it. In

doing so, the user can always see what he or she is typing in real

time. The user can input a Non-Printing Character (NPC) called the

carriage return, and the shell executes the entire line as a command,

optionally asks the terminal to print some output, and stands by for

the next command.

In the 1960s, glass teletypes emerged. They worked exactly as

older teletypes, except that they displayed characters on a screen

rather than printing them on paper. That’s why to this day, display-

ing text on a terminal screen is referred to as printing!

64 | COMPUTER SCiENCE UNLEASHED

Screens allowed for the creation of the cursor: a movable indi-

cator that specifies the location of interaction between the shell and

the screen. Users started to use non-printing characters to ask the

shell to move the cursor around. Crucially, cursors allowed previ-

ously printed text to be replaced or deleted, making interactions

with computers more efficient. This sparked a surge in the develop-

ment of computer programs with interactive text-based interfaces.

Video monitors were introduced in the late 1960s, and the

first commercial computer with a Graphical User Interface (GUI)

appeared in 1979. Today, virtually all personal computers such as

laptops and phones run a shell that operates a GUI: we interact

with icons and windows using mice, trackpads, and touchscreens.

Figure 2.3 “Command Line”, courtesy of http://commitstrip.com.

Still, many IT specialists continue to interact with computers via CLI.

This can be by necessity—for example to operate GUI-less corporate

servers—but also by preference. Many geeks use their GUI only to

open a terminal emulator: an app that hooks into the CLI shell and

transforms the screen and keyboard into a glass teletype.

Communication | 65

Terminal emulators are powerful interfaces.15 Via CLI, one

can perform nearly any text-based task, such as organizing folders,

sending emails, writing code and compiling software. We actually

wrote and edited this book on terminal emulators!

Figure 2.4 Running dig on a Linux or MacOS terminal emulator.

Telnet

Formost of the 1950s and 1960s, a terminal had to be wired directly

to a computer in order to communicate with its shell. However,

this changed in 1969, when engineers devised a way to connect

terminals to any computer on a network. They called it teletype

network, or telnet.

Terminal emulators can use telnet to access distant computer

shells over the Internet. The CLI of a distant shell must be extremely

reliable as unordered or missing characters could cause it to execute

erroneous and potentially destructive commands. For this reason,

the preferred transport layer protocol for telnet is TCP rather than

UDP. Telnet servers typically expect connections on TCP port 21.

15Some passionate nerds showcased this by allowing you to watch Star Wars

on a terminal: http://code.energy/terminal-movie.

66 | COMPUTER SCiENCE UNLEASHED

When a TCP connection is established on port 21, the telnet

server launches a shell and sends all incoming data from the con-

nection into the shell. The output of the shell is sent to the client.

On the client side, all characters typed by the user are transmitted

to the server in real time, character by character. And when the

client receives one or more characters, they’re displayed on their

terminal emulator.

Usually, after a telnet connection is established, the distant shell

asks for a username and password for authentication. Once logged

in, the telnet client works as a terminal hooked directly to the server.

If a computer runs a telnet server, any computer connected to the

Internet can act as a terminal for that server.16 Geeks can operate a

computer on another continent as if they were sitting right next to

it with a screen and keyboard!

Communication protocols over the Internet are not exclusively

used by geeks. Let’s now have a look at the most popular applica-

tions of the Internet, starting with the best-known way of exchang-

ing written messages.

2.4 Mail

In the 1960s, the few computers that existed were shared by many

users. At that time, “mail” programs were already popular, but they

only allowed a user to leave a message to a peer who worked on

the same computer. These programs simply appended text to files

that served as mailboxes. One mailbox file was attributed to each

user. When users logged into their computers, alerts would appear

if their mailboxes contained new messages.

During the 1970s, computer networks grew and the technology

to access files in distant computers materialized. Mail programs

evolved to append text to mailboxes of remote computers. This

allowed users of distant computers to exchange messages as if they

were on the same machine. Over time, programmers improved the

16Broad exposition to the Internet causes security risks and telnet is considered

unsafe. Nowadays, we use a similar protocol called Secure Shell (SSH). The end

user experience feels almost exactly like telnet, but it uses cryptography to deter

hacking attacks. We explain it in the next chapter, so hang in there!

Communication | 67

efficiency of these systems by gradually adopting a common mes-

sage format, which looked like this:

From: White at SRI-ARC

Date: 24 JUL 1973 1527-PDT

Subject: Multi-Site Journal Meeting Announcement

NIC: 17996

At 10 AM Wednesday 25-JULY there will be a meeting

to discuss a Multi-Site Journal in the context of

the Utility. Y'all be here.

The message starts with headers, which carry general information

about the message, such as its sender, recipient, and subject. Each

header takes one line, and a colon separates the header name from

its value. After the headers, an empty line signals the start of the

message body. These messages were widely used by computer

geeks, who began calling them email (the e stands for electronic).

To this day, the emails we exchange still follow this format!

In 1973, the above email could be replied to by appending a

new message to the mailbox file White in the computer SRI-ARC.

At the time, TCP/IP and DNS didn’t exist, and computers were

referred to by such nicknames. Later, the at was deprecated in

favor of the @ symbol, so the mailbox in the example would be

written white@SRI-ARC. For context, SRI stands for Stanford

Research Institute, one of the organizations that helped to create

and standardize this message format.

Mail Servers

Computers gradually became less expensive, and by the 1980s it

wasn’t uncommon for someone to be working onmultiple machines.

Yet, it would be easier to reach people by email on large scales

if each person had a primary mailbox address at a single location.

Many groups of users decided to monitor their primary mailbox on

the same host, as if everyone still worked on a single computer.

Organizations typically facilitated this by designating one of their

computers as the mail server.

In those times, university students and tech engineers would

have an account in their organization’s mail server, regardless of

68 | COMPUTER SCiENCE UNLEASHED

which computers they happened to be using. Everyone’s primary

email address would point to this mail server. From their different

computers, people would use telnet to log into the mail server and

read emails stored in their individual mailbox files.

In 1985, DNS was rolled out, and it vastly improved the email

system. Organizations started to adopt domain names and to cre-

ate MX records to publicly announce their mail servers. Domain

names became the standard addressing scheme for mailboxes. For

instance, the mailbox named White in SRI’s mail server would now

be addressed as white@sri.com.

When given this email address, anyone could use DNS to dis-

cover the mail server that stores its mailbox file and send IP pack-

ets to that computer. However, in order to store a new message

in someone else’s server, one had to first be granted access to its

mailbox files. This was cumbersome, so engineers started to invent

ways for emails to be received without the external manipulation

of any file on the receiving server.

This was the rise of email protocols. Just as NTP provides the

framework for programs to exchange time, mail protocols allow pro-

grams to exchange emails. Various protocols were developed and

soon every mail server abided by one of them. Emails could now

be sent to virtually any location that IP packets could reach.

As any organization connected to the Internet could participate,

email quickly gained prominence. What started off as simple notes

left on a friend’s desk was gradually becoming as important as tra-

ditional written correspondence.

In the 1990s, Internet Service Providers started bringing Inter-

net access into people’s homes. As one of their main selling points,

ISPs often invited customers to open email accounts on their servers.

In those years, personal computers were also starting to ship with

email programs pre-installed. People mostly used them to connect

to their ISP or employer’s mail server.

And email spread like wildfire. Regular individuals flocked to

the Internet in droves, sometimes solely in order to use email. One

protocol stood out as the main enabler of this email revolution.

Let’s now learn how to transfer messages between hosts and email

servers following that protocol.

Communication | 69

Simple Mail Transfer Protocol

The most widely used email protocol is the Simple Mail Transfer

Protocol (SMTP). It defines the conversation rules between an

email server and a client computer. As we’ll see, SMTP is more

elaborate than request–response protocols17 such as DNS and NTP.

First off, emails can contain messages that don’t fit in a single IP

packet. When an email is carried by many IP packets, it is important

for their payloads to be pieced back together in order. For this

reason, SMTP runs on TCP rather than UDP.

Mail servers expect incoming connections on TCP port 25.

When a connection is established, the server starts the conversa-

tion. It sends a message to identify itself:

220 mail-server.example.com

All messages sent by the server start with a three-digit number,

called the return code. SMTP defines many different codes, each

with their own meaning. Specifically, 220 communicates that the

server is ready to receive instructions. After the code, the server

states its own name. In response, the client should send a HELO

command to identify itself:

HELO client.code.energy

At this point, the server decides if it wants to continue the conver-

sation, based on who the client claims to be. Some mail servers

use reverse DNS and compare the client’s self-reported name to the

name that’s linked to its IP address. If the mail server decides to

continue, it will send a 250 response code, which means that the

action requested by the client was accepted:

250 mail-server.example.com

With this exchange, both the client and the server acknowledged

that they are about to transfer an email. They both also checked

that they are communicating with their intended counterpart. Next,

17Request–response protocols are exactly what they sound like: a client sends

a request to a server and then waits for a response.

70 | COMPUTER SCiENCE UNLEASHED

the client is expected to give the return address of the email to be

transmitted. If the server cannot deliver the client’s email, it will

send another email to the return address informing it of the issue:

MAIL FROM: <ada@code.energy>

Again, the server has the option to accept or reject this. Some mail

servers are configured to only accept certain email addresses. If the

address is accepted, the server returns the 250 code:

250 Ok

Next, the client must inform the server of the destination mailbox:

RCPT TO: <charles@example.com>

Again, the server confirms whether it accepts this destination mail-

box. If the server accepts to receive the message, it will use the

same 250 return code, informing the client that it can go ahead:

250 Ok

The client can now send the DATA command. This command asks

the server to begin the transmission of the email message:

DATA

The server confirms and instructs the client to signal the end of the

transmission with a line containing only a dot. The 354 return code

informs the client that the server will consider the next characters

it receives as part of the email message:18

354 End data with <CR><LF>.<CR><LF>

The client can then transmit the message. The From, To and Date

headers are mandatory and must be present in every email. Other

kinds of headers, such as Subject, are commonly used but are

not required. The message body is also optional. Sending an email

18The non-printing characters <CR><LF> are a carriage return, followed by a

line feed. This combination marks the end of a line.

Communication | 71

without a body is similar to posting an empty envelope. Here’s an

example of an email the client could transmit:

From: <ada@code.energy>

Date: Wed, 27 Nov 2002 15:30:34 +0100

To: <charles@example.com>

That brain of mine is something more than

merely mortal; as time will show.

.

After the finishing <CR><LF>.<CR><LF> is delivered, the server

checks that the received data is valid and formally accepts the mes-

sage if that is the case. Many servers also inform the client of the

internal ID that they assign to the received email:

250 Ok: queued as 1079212633C

At this point, the client can rest assured that the server will either

deliver the message or bounce19 it back with an error message. The

client may continue by sending another MAIL FROM command to

sendmore emails. Otherwise, it can politely say it’s done by sending

a QUIT command:

QUIT

Upon receiving this, the server should say goodbye and close the

TCP connection:

221 Bye

A conversation similar to this one takes place every time you send

an email—your email software performs it behind the scenes. Orig-

inally, there was no authentication in SMTP: servers blindly trusted

clients were sending legitimate emails. Sadly, once email became

popular, inconsiderate Internet actors started sending unsolicited

junk to every email address they could find. The most malicious of

them even send fraudulent emails with illegitimate From fields.

19SMTP was designed to be dependable, so mail servers won’t drop an

accepted email without notice. A rejected message is called a bounce because

its content is returned to the sender.

72 | COMPUTER SCiENCE UNLEASHED

Sending Emails

Email was initially created as an open system in which anyone could

participate without asking any central authority for permission. Its

pioneers hoped all participants would act in good faith. Unfortu-

nately, as soon as email was widely adopted, this hope was lost.

Nevertheless, engineers kept working to make email resilient to bad

actors, without relinquishing its open nature.

At first, engineers started keeping public blacklists, which were

frequently updated with names and IP addresses of known email

abusers. Administrators configured their servers to automatically

reject connections from blacklisted users. This mitigated the prob-

lem, but didn’t fix it: abusers learned to use fresh IP addresses and

domain names to send junk.

To this day, the majority of bad emails come from Internet con-

nections provided by ISPs. Most organizations carefully police the

use of their networks in order to protect their reputation. However,

ISPs often service millions of users, and individually screening each

one isn’t viable.

Fortunately, it’s easy to check whether an IP address belongs to

a well established organization or to a home connection: you con-

sult its reverse DNS record. ISPs don’t allow residential clients to set

these records, but all credible mail servers will have proper reverse

DNS for their IP addresses. So mail servers have started restricting

home IP addresses, which drastically reduces email abuse.

In order to implement this policy, SMTP has been upgraded

to an extended version (ESMTP) with support for authentication

via username and password. For all home users, MAIL FROM com-

mands are only accepted after the user is authenticated through an

AUTH command.

This is how sending an email works today: you compose an

email, and your computer uses SMTP to submit it to your mail

server. Your mail server then connects to the mail server associated

with the destination mailbox and uses SMTP to relay your email.

Since your mail server’s IP address has a reverse DNS record, it can

communicate to all other mail servers without authentication.

So email traffic is divided in two: users submitting messages to

their own mail server and mail servers relaying messages to each

Communication | 73

other. Today, TCP port 587 is reserved for email submission, and

port 25 is reserved for email relay. Home email users have stopped

using TCP port 25.

Accordingly, most ISPs even drop home IP packets containing

segments to port 25, effectively blocking home Internet users from

performing email relay. Mail servers expect incoming connections

on two TCP ports:

• Port 25, to receive emails from other mail servers,

• Port 465, to receive emails from authenticated users.

All this still isn’t enough to curb the malicious email senders. The

fight between engineers and senders of junk still rages on. In some

cases, engineers guess which emails are junk using intricate sorting

mechanisms. In others, they use cryptographic signatures to verify

the sender email’s address.

Retrieving Emails

At first, people read their emails by directly opening mailbox files.

In most cases, people weren’t sitting in front of their mail servers,

so they would use telnet to open their mailbox files remotely. Engi-

neers realized it would be easier if people could download their

emails on their own computer and read them “locally”. This would

spare them the hassle of using telnet every time they needed to

read an email.

Since SMTP wasn’t a suitable way for a server to deliver email

to an end user, another strategy was needed. After all, most users

wouldn’t have their computers online 24/7, ready to receive incom-

ing SMTP connections. Therefore, new protocols were developed;

they allowed users to initiate a connection to the mail server, get

a list of emails in the mailbox, and select which ones to download

from the list.

The most commonly used of such protocols is the Internet

Message Access Protocol (IMAP). Its working principle is similar to

SMTP, the server also conducts a conversation with the client using

command codes and plain text. There are commands for clients to

list the emails in their mailboxes and to request the transmission

of a specific email.

74 | COMPUTER SCiENCE UNLEASHED

Today, roughly half of the world’s emails are sent and received

through webmail services such as Gmail. These services offer

the most hassle-free access to email, as they don’t require you to

install or configure a client application on your computer. Let’s

now explore the Web: the beautiful set of mechanisms that made

this—and much more—possible.

2.5 Web

If a text document contains links referencing other documents, and

these links allow you to jump back and forth across multiple doc-

uments, the text is said to be hypertext: the links create an extra

dimension in the textual space. For example, Wikipedia is hyper-

text, but a physical encyclopedia is not. Hypertext doesn’t have to

be read linearly like regular text—it can be explored by navigating

through the links.

As graphical user interfaces spread in the 1980s, knowledge

workers discovered hypertext could make their jobs easier and

more efficient. While early programs to read and write hyper-

text documents gained popularity, it was still impossible to create

links between hypertext documents residing in different computers.

Hypertext documents were largely isolated from each other.

With the advent of the Internet, a new hypertext system was

created to overcome this limitation. Documents created and stored

on different computers could finally be linked into a universal web

of documents. The system was named the World Wide Web, or

WWW—and its hypertext documents were named web pages. For

it to work, different computers around the world had to share three

basic components:

• A language to write web pages as files,

• A way to link web pages to each other,

• A protocol to transfer files between computers.

A program that uses these three components is a called a web

browser. Virtually every web browser today agrees on a basic set

of standards. Let’s explore how they work.

Communication | 75

Hypertext Markup Language

Web pages should be easy to create, while also being universally

understandable by all Internet participants. To attain these goals,

it was decided that web pages would consist of plain text, enriched

with special tags for specifying structure and presentation.

The Unknown The

more you know,

the more you

realize you

don’t know.

The Unknown The

more you know,

the more you

realize you

don’t know.

This is a header

This is a paragraph

The Unknown

plain text plain text + marks rich text

The more you know,

the more you realize

you don’t know.

Figure 2.5 Rich documents can be created bymarking plain text.

Tags can be used to mark a paragraph, to set a phrase as a header,

to emphasize a word, and much more. A collection of tags that can

be mixed with text to extend it forms a markup language. Many

different markup languages exist. The one created for the Web is

called Hypertext Markup Language, or HTML. In HTML, any text

that’s enclosed by <…> characters is a tag. For example, this is how

a header followed by a paragraph is expressed:

<h1>The Unknown</h1>

<p>The more you know, the more you realize you don't

know.</p>

This example includes two HTML tag pairs: <h1>…</h1> and

<p>…</p>. The h1 tags indicate that “The Unknown” is a header.

The p tags demarcate a paragraph. Many other tags exist besides

these, and most are used to define the structure of the document.20

20Another language, called Cascading Style Sheets (CSS), was later created to

customizemost aspects of how an HTML document and its structure are presented:

fonts, layout, colors, etc.

76 | COMPUTER SCiENCE UNLEASHED

Typically, HTML tags come as opening/closing pairs: each pair

applies over a section of the document, and the closing tag includes

a slash. However, a few tags, called empty tags, don’t come in

pairs. For instance,
 is used to insert a line break in the text,

and is used to insert an image.

Complete HTML web pages must have two parts: the head

and the body. The head contains information about the document

which web browsers shouldn’t display. The body, on the other hand,

is meant to be displayed on screen by web browsers. Here is an

example of a simple but complete HTML web page:

<html>

<head>

<title>Daily quote</title>

</head>

<body>

<h1>The Unknown</h1>

<p>The more you know, the more you realize

you don't know.</p>

</body>

</html>

As you can see, the head and body are each wrapped in a tag pair

with their respective name; and both are wrapped together in an

<html> tag pair. Try creating a text file with this content, sav-

ing it as an .html file, and opening it on a web browser! Within

an HTML file, spacing and line breaks are ignored by the browser.

They’re just used to make the file easier for humans to read.

Many tags can contain attributes that extend or complement it.

For instance, the <html> tag can contain an attribute that specifies

the document’s language: <html lang="en">. Some tags have

a mandatory attribute. For example, the tag must specify

which image to display:

Communication | 77

The most important HTML tag is the anchor tag <a>. It transforms

a section of the document into a link to another hypertext location.

Consider the following example:

Everybody loves them.

Web browsers will render this line on screen as follows:

Everybody loves them.

Clicking the underlined word instantly switches to a different loca-

tion as specified by the hypertext reference (href) attribute of the

anchor. Let’s now learn how to express these locations in order for

web browsers to find them.

Uniform Resource Locator

The anchor’s href parameter is a reference to a document that is

shown once the anchor is clicked. It follows a simple format: two

slashes, followed by the name of the host where the document lives,

plus the path to the document. For example, here’s a link to the

document “/pets/cat.html”, located in the zoo.org host:

kitten

Browsers interpret the document path as the location of a file within

the host’s file system. For instance, the document referenced by

the anchor above is assumed to be a file named “cat.html” inside

a “pets” directory.

RELATiVEREFERENCES If a reference doesn’t start with any slashes, it

is treated as a folder-relative reference. For instance, suppose this

link exists in the //zoo.org/pets/cat.html document:

Are they our best friends?

Here, the href parameter refers to a file in the same directory as

the present file (cat.html). Hence, the browser will interpret this

78 | COMPUTER SCiENCE UNLEASHED

reference as //zoo.org/pets/dog.html. There are also references

with only one starting slash, which are host-relative:

Ants are small.

This reference will be interpreted as //zoo.org/bugs/ant.html.

FRAGMENT REFERENCE There is a way to refer to a specific part, or

fragment, of an HTML document. Suppose that the dog.html file

looks like this:

<h1 id="bulldog">Bulldog</h1>

<p>…</p>

<h1 id="poodle">Poodle</h1>

<p>…</p>

<h1 id="golden">Golden Retriever</h1>

<p>…</p>

We can create an anchor that links directly to the header about the

golden retrievers inside the dog.html document, like this:

These dogs rock!

The # character can also be used to jump to a different place within

the document that is being accessed. For example, this trick is used

in the Contents box of Wikipedia pages to allow you to jump directly

to a section you’re interested in.

Similar references are used when referring to other types of

media resources, such as images. For instance, if there’s a picture

of a golden retriever on the zoo.org host, it can be included in the

document like this:

<h1>Golden Retriever</h1>

<p>As you can see in this picture…</p>

SCHEME There’s another important piece of information we can

add to our web references: the way the resource will be accessed,

known as the scheme. One that you might immediately recognize

Communication | 79

is http, the most widely used protocol to transfer web page files

between computers. The scheme will appear in the beginning of a

reference and is succeeded by a colon:

kitten

A complete reference to a web resource—which includes a scheme,

a host, and a document path—is called a Uniform Resource Locator,

or URL. People also call them web addresses. Web browsers typi-

cally display the URL of the page they are rendering in a bar at the

top. Let’s now see how the http scheme works.

Hypertext Transfer Protocol

The most common action we perform when browsing the Web is to

click a link to switch from the web page we are viewing to the next

one. Every time a link is clicked, the web browser has to contact

the computer hosting the referred document and retrieve a copy of

that file. The Hypertext Transfer Protocol (HTTP) mediates these

document transfers.

Since transferred documents can be larger than the MTU, HTTP

relies on TCP rather than UDP. It has a client–server design: a web

browser is the client application, and the web server expects connec-

tions on port 80. After a connection is established, the client sends

a request. Once the server processes it, a response is sent back.

In 2015, HTTP received a major upgrade,21 but the version

from the 1990s is still widely used. Requests that follow the ear-

lier version of HTTP are in plain text. The first line indicates the

request type, the document path, and the protocol version. The next

lines are used for headers, similarly to email messages. Finally, an

empty line indicates the end of the request:

GET /pets/cat.html HTTP/1.0

User-Agent: Mozilla/5.0 (Macintosh)

Accept-Language: en-us

21The 2015 version of the protocol is referred to as HTTP/2. It adds several

performance improvements over the previous version, but it doesn’t change the

general structure of the communicated information.

80 | COMPUTER SCiENCE UNLEASHED

The above example shows the most common request type: GET.

It indicates the client wants to retrieve a document. Headers are

optional, but are almost always included. The example shows two

of the most common headers. Accept-Language specifies that

the English version of the document is preferred, and User-Agent

says which web browser software and which computer operating

system created the request. A typical response from a server to

such a request looks like this:

HTTP/1.0 200 OK

Server: nginx/1.15.8

Date: Wed, 19 Aug 2020 20:46:53 GMT

Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT

Content-Length: 49

Content-Type: text/html

<html><body><h1>Cats are cute!</h1></body></html>

The first line indicates the protocol version, followed by a three-

digit status code, similar to the ones used in SMTP. Here, 200

means the request went through without any issue. Many more

codes exist. For instance, 404 indicates that a requested document

can’t be found. Codes are grouped by their first digit. Namely, those

starting with 2 signal successful requests, and those starting with 4

signal errors caused by inappropriate requests.

After the first line, optional headers are included. In our exam-

ple, there are headers informing the client of the server’s software,

the date the message was sent, when the requested document was

last changed, the type of document carried, and its total length.

Many other headers are widely used for authentication, tracking,

caching, and more.

HTTP has been incredibly successful, and it has grown to be

used outside the World Wide Web. For instance, an app in your

phone may send out an HTTP request to obtain raw weather data.

The retrieved data can then be used to display weather conditions

by a widget in the phone’s interface, rather than on a web page

provided by the server.

Communication | 81

Web Apps

An HTTP request may carry a path referencing a program. In such

cases, the server runs the program and responds with its output. For

example, requests for /random at code.energy refer to a program

that generates a page containing a random number. The server

returns a dynamic page, rather than a static page that looks the

same at every request. Visit this page on a browser and refresh it

a few times to see for yourself:

http://code.energy/random

Dynamic pages can also receive inputs from the user as parameters.

For instance, google.com has the dynamic page /search, which

takes a parameter named q as a search query. The parameter is

appended after the document path as follows:

http://google.com/search?q=energy

In order to load this web page, browsers can send this request:

GET /search?q=energy HTTP/1.0

Upon receiving this request, the web server calls the program associ-

ated to /search. Any parameter in the form ?name=value after

the path is passed to the program. Input parameters in this form

are called query strings.

Since there are characters that valid URLs cannot contain, there

is a standard way of encoding them using the percent sign. For

instance, the space22 becomes %20 and ! becomes %2F. Query

strings can include multiple parameters separated by ampersands

(&). Visiting the following URL searches “code energy” and passes

an additional num parameter for listing only five results:

http://google.com/search?q=code%20energy&num=5

Query strings are neatly integrated with HTML. Some tags, includ-

ing <form> and <input>, can be added to web pages for a user

22In query strings, the space can either be encoded %20 or simply with a plus

sign +. This does not work, however, elsewhere in the URL. Characters that have

special functions (such as +, %, ?, =, and &) must also be encoded for those func-

tions to be bypassed.

82 | COMPUTER SCiENCE UNLEASHED

to easily enter and submit data using query strings. The following

HTML code creates an input box to enter keywords and a button

to dispatch the query:

<form action="//google.com/search">

<input name="q">

<button>Search Google</button>

</form>

Once the button is pressed, an HTTP request of the GET type passes

the text typed in the input to the server as a query string. On the

server end, a program finds the links that it deems most useful for

the user and sends them back within a web page document.

In general, programs that respond to HTTP requests of the GET

type should perform no action other than to retrieve information.

For example, a GET request shouldn’t allow a user to post a sta-

tus message on social media, delete a photo from a cloud drive, or

place an order on an online shop. This means users can issue GET

requests without worrying about consequences other thanwhat will

be shown on their web page.

In order to perform these other actions, there exist several other

HTTP request types. For example, if the desired effect is to create

something, the POST type should be used. An HTML form can be

switched to send POST requests by setting a method parameter in

the <form> tag:

<form action="/send-message" method="POST">

<p>Subject: <input name="subject"></p>

<p>Message: <input name="message"></p>

<button>Send message</button>

</form>

In POST requests, input data is carried in the body of the request

rather than in the query string. However, the data is still encoded

the same way. Here’s a POST request that could be generated by

submitting the form from the above example:

POST /send-message HTTP/1.0

subject=Greetings&message=Hello%20World%2B

Communication | 83

It’s possible to create intricate systems that can be operated from

web browsers. A prime example are webmail systems such as Hot-

mail and Gmail. These websites allow people to use email through

their browser. The web server is tasked with talking to mail servers,

allowing users to send emails without directly establishing any

SMTP connections from a web client.

To facilitate this, HTML pages can include JavaScript code. We

can then program web pages with the same capabilities as other

graphic applications! Increasingly, web pages are evolving from

plain hypertext documents to full-fledged apps.

Conclusion

We learned about some of the most notable Internet applications

and their protocols, but there are many more we haven’t explored.

For instance, we’ve seen in Chapter 1 that routers must regularly

exchange connectivity information. To that end, they run applica-

tions that communicate using the Border Gateway Protocol (BGP)

on TCP port 179. If you want learn about BGP and other interesting

protocols in depth, check the references at the end.

Port Numbers

We’ve seen how each protocol is associated to a specific TCP or

UDP port number. Applications that use the same protocol almost

always expect connections on the same port number. For exam-

ple, you don’t need to know which port number to use in order to

retrieve aweb page from a host—web servers expect connections on

TCP port 80. IANA is the organization that decides which port num-

ber is standard for each protocol. When a new protocol is created,

its developers send IANA an application to reserve a port number.23

Rather than developing a new protocol and applying for a

port number, many application developers piggyback on existing

23Ports 0–49151 should only be used by protocols registered with IANA. Ports

49152–65535 are never assigned to any protocol and can be used for any purpose.

You can check the current port number assignments at http://code.energy/ports.

84 | COMPUTER SCiENCE UNLEASHED

generic protocols for communicating over the Internet. For exam-

ple, many applications are made accessible over the Internet by

integration with a web server. In such cases, HTTP is used to trans-

fer raw data (rather than web pages) to and from the applications

(rather than web browsers).

Peer‑to‑Peer

In this chapter, all the application layer protocols that we have

explored follow a client–server architecture. However, there is

an alternative architecture called Peer-to-Peer (P2P), where each

application acts both as server and client. Notable examples of P2P

protocols include BitTorrent, the file-sharing protocol, as well as

Bitcoin and Ethereum, the two largest cryptocurrency networks.

Peer-to-Peer services eliminate intermediaries between users

and have no central point of failure. BitTorrent, Bitcoin and

Ethereum cannot be shut down. The United States military uses

P2P technology extensively for troops to operate without central

coordination and without relying on centralized infrastructure

such as cellphone towers.

Security

One other important aspect of the Internet that we haven’t addressed

is its lack of security. Whoever is operating a router can read and

modify data from any packet that reaches it. We’ve seen that

IP packets are handled by many unknown routers as they move

through the Internet. Therefore, we must consider all data travel-

ing on board IP packets as potentially public information, and we

can’t completely trust that data received over the Internet hasn’t

been changed on the way. To mitigate this flaw, application layer

protocols often include encryption schemes so the data can’t be

read or inconspicuously tampered with by intermediaries. In the

next chapter, we’ll see how it works.

Communication | 85

Reference

• Computer Networking: A Top-Down Approach, by Kurose

– Get it at http://code.energy/kurose

• Computer Networks, by Tanembaum

– Get it at http://code.energy/tanenbaum

CHAPTER 3

Security

Computer systems are not getting more secure.

I hope that in the future, the advances we’re

making in cryptography are going to influence

the fairly bad situation in cybersecurity.

—Adi Shamir

P
rogrammers are entrusted with the task of securing sen-

sitive data, such as private messages, banking transactions,

medical records, and more. It is your duty to protect this

data from hackers. You must ensure that only those with valid cre-

dentials can access your systems and that confidential data cannot

be read even if it is leaked.

The practice of securing data against attacks from unautho-

rized parties is called cryptography. An algorithm that reversibly

encrypts data into an unintelligible form is called a cipher. Most sys-

tems can be secured using cryptographic libraries vetted by experts.

In this chapter, we’ll explore the underlying principles of ciphers

and other tools cryptographic libraries provide. You’ll learn to:

Mess around with fun but insecure legacy ciphers,

Improve them to obtain strong symmetric ciphers,

Securely message strangers using asymmetric ciphers,

Hash any amount of data into a digital fingerprint,

Secure your networking protocols for a safer Internet,

Hack your systems to find vulnerabilities before bad guys do.

If attackers successfully intercept encrypted data, there’s a chance

they will figure out how to unscramble the data and reveal its

secrets. If that happens, we say the cipher used to encrypt the

87

88 | COMPUTER SCiENCE UNLEASHED

data was broken. Let’s start by exploring ciphers that were popular

in the past and which are easily broken today. This will help us

understand why it’s difficult to break modern ciphers.

3.1 Legacy

One of the earliest ciphers was used by Julius Cesar over two thou-

sand years ago to send secret letters to his generals. His encrypted

messages would look like this:1

GR QRW EULQJ DQB ERGB RI PHQ DFURVV WKH UKLQH

If a secret letter from Caesar was seized, the information contained

in the letter would remain confidential. Caesar’s enemies couldn’t

make sense of the encrypted messages, but his generals could easily

read them. To encrypt messages, the Romans agreed in advance to

shift every letter of the original message three positions forward in

the alphabet, replacing the letters as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

3 3
↓ ↓

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Messages were then decrypted by shifting the letters back. This is

known as the shift cipher. Since Caesar’s enemies never discovered

how it worked, it provided enough security. However, anyone who

knows about this cipher can easily break it, even if letters are shifted

more than three positions: there are only 25 possible shifts for the

Latin alphabet. An attacker can break the cipher by trying them

one by one until the message makes sense.

Let’s have a look at a few useful terms. An encrypted message

is called a ciphertext. To decrypt a ciphertext, we need to know

which cipher was used, and which encryption key was used with it.

For the shift cipher, the key is the number of positions in the alpha-

bet that letters are shifted. Knowing cipher and key, we can undo

the encryption and recover the original data, called the plaintext.

1In reality, messages would look slightly different because Caesar only knew

23 letters… and didn’t speak English.

Security | 89

Secret Code Flipping through the pages of an old

book from your grandmother’s library, you come across

this handwritten footnote:

MAXI KBVX HYLX VNKB MRBL XMXK GTEO BZBE TGVX

VTKX EXLL VHFF NGBV TMBH GLVH LMEB OXL

She tells you she used to have fun with the shift cipher

when she was a teenager but can’t remember what the

cryptic writing means. Can you recover the plaintext?

The simplest way to crack a shift cipher is to test different keys on

the ciphertext and see if the output makes sense. There are only 25

possibilities! You can find the solution in Appendix II.

Zigzag Cipher

There’s a way to scramble the plaintext which does not require

any letter substitutions. Instead, the letters are shuffled in a pre-

arranged way. For example, consider the following dispatch:

We were found. Flee at once.

Let’s first remove all unnecessary formatting, as it could give out

clues about the cipher. Typically, all letters are capitalized, punctu-

ation is omitted and spaces are either removed or replaced by Xs:

WEXWEREXFOUNDXFLEEXATXONCE

We now write each letter on a different line than the previous. For

example, let’s follow a zigzag pattern across three lines:

Line 1

Line 2

Line 3

W E F D E T C

E W R X O N X L E A X N E

 X E U F X O

The final ciphertext is obtained by joining the three lines together:

WEFDETC

EWRXONXLEAXNE → WEFDETCEWRXONXLEAXNEXEUFXO

XEUFXO

90 | COMPUTER SCiENCE UNLEASHED

This is called the zigzag cipher, and its encryption key is the num-

ber of lines used by the pattern. This cipher suffers from the same

fragility as the shift cipher: only a limited number of keys are possi-

ble. One can easily break the cipher by testing the reverse process

for every possible number of lines.

Substitution Cipher

Let’s go back to ciphers that replace letters in the plaintext. A cipher

that has a different rule for replacing each letter is more secure than

the shift cipher. For instance, you could meet a friend and agree

on the following map of letter substitutions.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

↓ ↓

V H I E R P X N D J F T G L B W O Q K Z M U C S Y A

This is a simple substitution cipher. Here, ENERGY would be

encrypted RLRQXY. The encryption key is the above map specifying

how letters are replaced. There are 26!ways to shuffle the alphabet

and create different keys.2 This means there are more distinct keys

than there are drops of water in the ocean. It would be impractical

for someone to try them all one by one.

Despite this, it leaves patterns in the ciphertext that can be ana-

lyzed. With some trial and error, it’s surprisingly easy to break the

cipher, especially when a computer can help us count letters and

recognize dictionary words. For example, in typical English texts,

E is themost frequent letter. If themost frequent letter in the cipher-

text is R, there’s a good chance E→R is in the key. Furthermore, TH

is the pair of letters that appears most often together in English. If

ZN is the most frequent letter pair of the ciphertext, we can guess

that T→Z and H→N.

This is called frequency analysis, and it provides a good start-

ing point for testing different encryption keys. Try to use it to solve

the following problem:

2The exclamation mark denotes a factorial: 26! = 26× 25× · · · × 2× 1.

Security | 91

Hollow Coin You found an old coin that seemed

exceptionally light. You dropped it on the floor and it

cracked open, revealing a tiny piece of paper. With a mag-

nifying glass, you read the following note:

DUA KVYBVHA PVJ OAZQMASAO DW CWES PQLA

KASJWFVZZC. AMASCDUQFH QJ VZZ SQHUD PQDU

DUA LVGQZC. PA PQJU CWE JEYYAJJ. HSAADQFHJ

LSWG DUA YWGSVOAJ.

Can you break the cipher?

This task can feel daunting at first, but with a pen, paper and some

patience, it is feasible. Since the plaintext is assumed to be English,

we start by finding the encrypted letters that most likely stand for E

and TH. Step by step, we compare half-solved words with common

English words and see how different possible substitutions affect

the rest of the text. One possible path to the solution is presented

in Appendix III.

ADVANCED SUBSTiTUTiONS Stronger substitution ciphers may con-

vert a plaintext letter to different symbols. For instance, plaintext

E could be replaced by either R, $, or *. By having more sub-

stitution options for the most frequent English letters, frequency

analysis becomes more difficult. However, common words and

letter pairs will still leave subtle patterns in the ciphertext. More

symbols can be devised to replace letter pairs and common words,

further thwarting frequency analysis—yet never defeating it.

Product Ciphers

A combination of ciphers is called a product cipher. They are most

effective when ciphers that shuffle the plaintext are combined with

ciphers that make substitutions. For example, a plaintext can go

through the zigzag cipher and then through the simple substitution

cipher. The resulting product cipher is stronger than any of its indi-

vidual components.

Suppose TH is the most frequent letter pair of the plaintext,

as expected for English texts. If TH is replaced for ZN, the most

92 | COMPUTER SCiENCE UNLEASHED

frequent letter pair of the ciphertext will not be ZN, due to the

zigzag shuffling. However, the occurrence of a given ciphered letter

always comes from the same plaintext letter, so frequency analysis

is still possible.

DuringWorld War I, the Germans used a product cipher to com-

municate via radio. The cipher had a substitution step followed by

a shuffling step. The Germans believed it was unbreakable. Yet, the

French managed to break it and eavesdrop on their foes. By know-

ing German plans well in advance, the Allies were able to anticipate

attacks and better manage their resources.

Vigenère Cipher

So far, we’ve seen ciphers that perform substitutions according to

one mapping between ciphertext and plaintext letters. Stronger

substitution ciphers use multiple mappings. One way to do this is

by iterating over a list of shift ciphers for each successive letter of

the plaintext. For instance, using the key 2-0-1-1-0-6-4, we

can replace letters as follows:3

|T H E R E F O|R E T H E Y L|O A T H E D T|H E F T
| | | |
|2-0-1-1-0-6-4|2-0--1-1-0-6--4|2-0-1-1-0-6--4|2-0-1-1-
| ↓↓↓ | ↓↓↓ | ↓↓↓ | ↓↓↓
| | | |
|V H F S E L S|T E U I E E P|Q A U I E J X|J E G U

This is called the Vigenère cipher. Notice that plaintext E letters

can be encoded as F, E, G, K or I. Using longer keys, each plaintext

letter has evenmore possible substitutions. As a result, the Vigenère

cipher canmitigate the threat of frequency analysis. This cipher was

invented in the 16th century, and remained unbroken for over 300

years. Many even believed it to be unbreakable.

Today, the Vigenère cipher can be easily broken by a com-

puter.4 By observing repeated sequences of letters in the ciphertext,

it’s possible to guess the length of the encryption key. For instance,

3Vigenère keys are often expressed with letters rather than numbers. This

allows for shorter keys, as the numbers 0-25 are written using one character

each (A-Z). For example, the key 17-24-15-19-14-2 can be written RYPTOC.
4The Vigenère cipher was first broken in 1845 by Charles Babbage—the same

man who designed the first programmable computer back in 1837.

Security | 93

notice that in our example, the pattern UIE is repeated. The second

occurrence appears seven positions after the first one:

V H F S E L S T E U I E E P Q A U I E J X J E G U

1 2 3 4 5 6 7

It is likely that a pattern that appears twice in the same Vigenère

ciphertext corresponds to a pattern that also appears twice in the

original plaintext. However, this only happens if the distance

between the two appearances is equal to a multiple of the length

of the encryption key. Since the two UIE sequences appear seven

positions apart, there is a good chance that the key has seven num-

bers. If, for example, they had been fifteen positions apart, it would

have been a sign that the key had three, five or fifteen numbers.

Once we have guessed the length of the key, frequency analysis

can be used. If the key length is seven, we start by retrieving every

seventh letter of the ciphertext. In the resulting group of letters, we

find the most frequent one: it is likely replacing the plaintext E.

Repeating this process with six more starting letters can be suf-

ficient to break the cipher if the text is long enough. Even if the

ciphertext is short like in our example, frequency analysis tells us

the most probable keys to test, and the solution can be found with

little computational power in today’s standards.5

Vernam Cipher

The Vigenère cipher is the most secure when the encryption key

has as many numbers as there are letters in the plaintext. We call

this variation the Vernam cipher. Mathematicians have proven it is

impossible to break the Vernam cipher, as long as the key is chosen

at random and only used once. Otherwise, patterns emerge.

Consider the two ciphertexts VSXOCQZQCLGHQGBFHTJK and

NHPJEXGPTDDBFCFOYKRA. If they were encrypted with the same

Vernam encryption key, there’s a trick we can apply. First, we

choose a common word that is likely to be in the plaintext, which

we call a crib. We assume the crib is in one of the plaintexts, and

check how it affects the other. Let’s try “tomorrow” as a crib:

5There’s a tool to break Vigenère ciphertext at http://code.energy/vigenere.

94 | COMPUTER SCiENCE UNLEASHED

ciphertext 1

ciphertext 2

V S X O C Q Z Q C L G H Q G B F H T J K

T O M O R R O W

 2 4 11 0 11 25 11 20

N H P J E X G P T D D B F C F O Y K R A

L D E J T Y V V

Figure 3.1 If the first letter of plaintext 1 is T, the first number of the

key must be 2, so that T→V. Under this assumption, the first letter of

plaintext 2 must be L, so that L→N.

If “tomorrow” was at the start of the first plaintext, the second plain-

text would have to start with “ldejtyvv”. Assuming neither of the

plaintexts contains gibberish, the word “tomorrow” can’t be at the

start of first plaintext. So we keep trying the crib at other positions.

When trying the 7th position, we have a breakthrough:

ciphertext 1

ciphertext 2

V S X O C Q Z Q C L G H Q G B F H T J K

T O M O R R O W

 6 2 16 23 15 16 2 10

N H P J E X G P T D D B F C F O Y K R A

A N D G O L D S

Figure 3.2 Bingo! By testing “tomorrow” in the seventh position

of the first plaintext, we derive a key segment which decodes the other

ciphertext to intelligible text rather than gibberish. This confirms the

guess was correct.

This trick is called crib-dragging. In order to make the Vernam

cipher immune to it, we should never use the same encryption key

on two different plaintexts. For this reason, we typically call a Ver-

nam cipher’s encryption key a one-time pad.

In the 1940s, the Soviet Army sometimes reused one-time pads

when transmitting Vernam ciphertexts. American intelligence man-

aged to intercept their radio transmissions and eventually broke the

code by crib-dragging. They discovered, among other things, that

Soviet spies had infiltrated their nuclear weapons program.

To this day, the Vernam cipher is the gold standard for secret

communications. It’s the only cipher that’s proven to be unbreak-

able if used properly. But it isn’t very practical: parties must share

Security | 95

an identical, large sequence of secret random numbers before they

can start exchanging encrypted messages. A secure cipher that

works with a shorter key would be much more versatile.

Cipher Machines

In the 1920s and 1930s, military powers around the world needed

to quickly encrypt and decrypt messages without the hassle of shar-

ing large encryption keys. Therefore, they designed machines that

ran smaller forms of shared secrets among communicating parties

as surrogates for the large keys. The new devices employed tricks

that allowed short shared secrets to be continuously expanded into

larger and larger encryption keys called keystreams.

These early cipher machines were made of successive wheels,

each with their own intricate internal wiring (Figure 3.3). Before

encrypting or decrypting each letter, the wheels moved in concert

to a new position. At each position, their wirings would form a

completely different circuit, expanding the keystream with a new

seemingly random mapping.

Messages seemed like they were encrypted using infinitely long

random encryption keys. In reality, the keystream was not random

but pseudorandom: the same keystream could be reproduced at

any time on a different copy of the machine. The only thing that

was needed was the knowledge of the shared secret:6 the initial

position of the wheels.

Figure 3.3 Cipher machine wheels. As they rotate, they form seem‑

ingly chaotic circuits in a deterministic and reproducible way.

6We often use the term encryption key to refer to the short shared secret rather

than the keystream it produces.

96 | COMPUTER SCiENCE UNLEASHED

Cipher machines were widely used in World War II, allowing mes-

sages to be encrypted and decrypted fast and using short shared

secrets rather than long one-time pads. However, their keystreams

displayed subtle patterns which were exploited by codebreakers on

both sides. Teams of mathematicians and engineers worked around

the clock to break intercepted ciphertexts.

All German cipher machines were broken before the war ended,

even the model used by Hitler’s high command. Meanwhile, the

strongest American cipher machine, called SIGABA, was never bro-

ken. In recent years, it was proven that patterns will always emerge

from a keystream generated by rotating wheels—meaning that even

SIGABA was vulnerable.

Fortunately, computers allow us to operate even stronger

ciphers. Let’s now explore how they can go one step further than

these analog cipher machines.

3.2 Symmetry

Today, almost all of our encryption relies on computers. Since our

computers operate on binary data, we must design our ciphers for

an alphabet of two symbols: 0 and 1. For instance, the Vernam

cipher can work with a binary alphabet just as effectively as with

a 26-letter alphabet:

plaintext

ciphertext

0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0

1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0

1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0

key
↓

Figure 3.4 Shifting binary plaintextwith a binary one‑timepad. When

the digit 1 is shifted forward, it loops over and goes back to 0.7

Any information that’s stored in a computer can be encrypted with

perfect secrecy using the Vernam cipher. However, the inconve-

nience of one-time pads remains. To encrypt a gigabyte of video,

7This process is equivalent to sequential boolean XOR operations. You can

learn more about boolean operations in our first book, Computer Science Distilled.

Security | 97

a gigabyte of secret random numbers is needed. And remember,

one-time pads can’t be reused: crib-dragging also works in binary!

Thankfully, there are secure ciphers that can encrypt large vol-

umes of data using a relatively small shared secret. These ciphers

are divided into two categories according to their underlying work-

ing mechanism. Let’s take the simplest first.

Stream Ciphers

The first approach is to avoid long one-time pads in similar fash-

ion to the cipher machines with rotary wheels. This time, however,

we write a computer program that generates an endless stream of

pseudorandom numbers. For example, given the non-square num-

ber 1337, a stream of seemingly unpredictable digits emerges as

we calculate its square root:

√
1337 = 36.56 50 10 59 75 64 44 26 58 66 10 65 18 28…

This is a basic form of PseudoRandom Number Generator (PRNG).

A PRNG requires a seed to serve as its starting point, similarly to the

shared secret that described the initial position of a legacy cipher

machine’s wheels. In our example, the seed is 1337.

Stream ciphers rely on PRNGs to generate keystreams. Let’s

take our example and group digits after the decimal point in pairs

to generate a stream of pseudorandom numbers between 0 and 99:

A T T A C K T O M O R R O W

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
56 50 10 59 75 64 44 26 58 66 10 65 18 28

E R D H Z W L O S C B E G Y

SEED

PRNG
1337

Figure 3.5 Vernam cipher running on a pseudorandom number gen‑

erator. The shared secret between the parties is just the seed.8

Today, stream ciphers generally use PRNGs that directly generate

a stream of binary digits. The PRNG algorithm is the foundation

8Here, it was also agreed that 26 corresponds to a shift of 0 positions, 27

corresponds to a shift of 1, etc.

98 | COMPUTER SCiENCE UNLEASHED

and the defining element of a stream cipher. A stream cipher is

only secure if its PRNG outputs pseudorandom numbers with no

detectable patterns. Even if they knewwhich PRNG to use, it should

be impossible for parties without the shared secret to distinguish the

PRNG’s output from a sequence of truly random coin flips.

To this day, we don’t know if an invulnerable PRNG exists. Vul-

nerabilities were found in many PRNGs proposed by experts in the

past. Before picking a stream cipher, check which ones are vetted by

experts, for which no vulnerabilities are known.9 Designing a good

PRNG is extremely challenging, so unless you want to become a

cryptographer yourself, we recommend you stick to existing ones.

NONCE Since keystreams have the same purpose as one-time pads,

they should never be used more than once. A PRNG will always

generate the same keystream when given the same seed, so a seed

should never be reused. If the shared secret is directly used as the

seed, communicating parties have to be able to agree on a new

one before each communication. This can be impractical, there-

fore cryptographers devised a trick that allows us to reuse a shared

secret. The trick uses a nonce: an arbitrary, single-use, non-secret

number that is combined with the shared secret to generate a seed.

KEY 1 0 0 1 0 1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 0 1 0 1 1 0

0 1 1 0 0 0 0 1 0 1 1 0 1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
NONCE

PRNG×

STREAM CIPHER

SEED

Figure 3.6 Stream ciphers typically require a shared secret (referred

to as the key) and a nonce. Unlike the key, the nonce doesn’t need

to be secret. If nonces are never reused, a key can be used to encrypt

multiple plaintexts.

Before you encrypt anything with a stream cipher, you must pick a

nonce. If you pick a random number, make sure you’re unlikely to

pick it again in the future. For example, you can generate a random

64-bit number: since there are more than a hundred million trillion

9Check the recommended ciphers here: http://code.energy/stream.

Security | 99

different possibilities, the chance of picking the same nonce twice

is almost zero.

When transmitting a message encrypted with a stream cipher,

send the unencrypted nonce along with the ciphertext. The receiver

will first combine the incoming nonce with the key, then recreate

the artificial one-time pad, and finally shift back the ciphertext to

obtain the plaintext. Even if hackers intercept many ciphertexts

and know each of their nonces, they will not be able to detect any

patterns between them since they each were encrypted with their

own keystream!

KEY SELECTiON An attacker that intercepts your ciphertext can try

to break it by brute-force: trying all possible keys until an intel-

ligible plaintext is found. Be pessimistic: assume your attacker

knows which cipher you are using and has multiple times the

entire computing power of the world. If you select a long enough

random encryption key, you insure yourself against any possible

brute-force attack. For instance, a 120-bit random key leaves a

powerful attacker no chance of brute-forcing your ciphertexts.10

MALLEABiLiTY ATTACK Suppose Ada sends an encrypted message

to her bank requesting a $100 transfer to Andrew’s account; and

suppose the message follows a standard format, where bits 5 to 9

encode the destination account number. Suppose Charles knows all

that, and is in charge of transmitting the encrypted message from

Ada to the bank. If Charles knows that Andrew’s bank account

number is 1001, he can change Ada’s message so that the deposit

goes to his own account number, 11100:

Original ciphertext

Forged ciphertext

0 1 0 0 1

0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0

0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0

Andrew’s account number

0 0 1 1 0 key segment

1 1 1 0 0 Charles’ account number

10To have a 0.1% chance of guessing a 120-bit random key, an attacker would

have to try 106 billion keys per second for 400 trillion years—almost thirty thou-

sand times the age of the universe.

100 | COMPUTER SCiENCE UNLEASHED

If an attacker can forge parts of the ciphertext only by knowing cor-

responding parts of the plaintext, we say that the cipher is malleable.

We can devise ciphers that aren’t malleable, as we’ll see next.

Block Ciphers

With stream ciphers, there’s always a clear relationship between

plaintext and ciphertext: if you flip the tenth bit of the plaintext

(changing it to 1 if it’s a 0 and to a 0 if it’s a 1), it will cause the

tenth bit of the ciphertext to flip. Having this relationship is not

ideal. In fact, the malleability of stream ciphers is a consequence

of it. A cipher is more secure if it produces no obvious relationship

between ciphertext and plaintext.

Recall the legacy product cipher that combined the zigzag and

simple substitution ciphers. It was stronger because the zigzag

shuffling diffused the relationship between ciphertext and plaintext.

But the zigzag cipher doesn’t do enough: ideally, the link between

plaintext and ciphertext should be so diffused that changing a single

bit of the plaintext would cause the entire ciphertext to change.

When using stream ciphers, changing one bit of the key leads

to a completely different ciphertext. Since the Second World War,

cryptographers have been developing ciphers for which changing a

single bit of either the key or the plaintext entails a transformation

of the entire ciphertext.

This goal can be achieved using a product cipher that combines

substitution and shuffling operations. However, ridding it from all

observable malleability across different chunks of the ciphertext is

not straightforward: the product cipher has to be applied multiple

times, and its substitution and shuffling operations must be care-

fully chosen. In fact, operations for a suitable product cipher could

only be found under the constraint that the plaintext always has

the same fixed size.

Ciphers that operate on this principle are called block ciphers,

because the plaintext must be encrypted in fixed-size blocks. If the

plaintext is longer than the block size, it has to be divided into mul-

tiple chunks. If a plaintext isn’t long enough to fill an entire block, it

is typically padded with zeros. Currently, the most commonly used

block ciphers work with blocks of 128 or 256 bits.

Security | 101

simple

shuffling

cipher

enough

rounds

?

ciphertext

ready

no

yes

simple

replacement

cipher

plaintext

00110000 01001110 10100010

11000011 11100101 00111001

01011100 11010011 00001010

10111010 00001100 01000000

11110101 00001001 10111010

11011111 00101110 10110011

00111000 00100101 10101000

11111000 11000001 00011010

00111110 00001000 00110011

01111000 10101111 00101100

ciphertext

encryption key

10001101 00001101 11010000

00100111 11010011 01100101

01000110 10100010 11000000

00100001 01011110 01010101

11001111 10000011 10101010

11101011 11000111 00100010

01000110 00000000 00000000

00000000 00000000 00000000

00000000 00000000 00000000

00000000 00000000 00000000

Figure 3.7 Simplified schematic of a block cipher. Typically, block

ciphers must iterate their core product cipher about a dozen times.

Block ciphers aren’t malleable. If one bit is changed in a block of

ciphertext, then the entiremessage gets decrypted into garbled data.

For this reason, even if bits of the plaintext are known, the attacker

is unable to alter the ciphertext and create a forged message.

There are several ways to split and encrypt plaintexts that are

longer than the block size. The simplest way to do it is to split and

pad the plaintext into blocks of the right size and then to directly

apply the block cipher to each one of them. We say that the result-

ing ciphertext was encrypted in Electronic Codebook (ECB) mode.

Unfortunately, there’s a problem with ECB: an attacker can

know if the same block of plaintext is encrypted twice using the

same key, as that will result in the exact same block of ciphertext.

For example, if an attacker knows that a block of ciphertext tells

a bank to credit $100 dollars to his account, he could potentially

replay that message again every time he wants an extra $100.

And beware: this vulnerability can also allow an attacker to

obtain information about a long plaintext encrypted in ECB mode.

For example, suppose we wish to encrypt an image file. When we

102 | COMPUTER SCiENCE UNLEASHED

split sections of the image file into blocks of plaintext, sections of

identical shade and color will yield identical blocks of ciphertext:

Figure 3.8 An image encrypted using a block cipher in ECB mode.

Patterns of plaintext (left) are repeated, and the disposition of those

repeated blocks in the ciphertext (right) reveal the nature of its content.

To fix this, we transform the plaintext to ensure every plaintext

block has a unique value. There are many ways to do it. One

way is to use a nonce as large as the size of a block, called the

Initialization Vector (IV):

• We start by transforming the first block of plaintext by apply-

ing the nonce as if it were a one-time pad (as demonstrated

at the beginning of this section). This transformed plaintext

is then properly encrypted with the block cipher key.

• For each subsequent block, we use the previous block of

ciphertext as the one-time pad to transform the plaintext.

Each transformed plaintext can then be safely encrypted

with the same block cipher key.

When a block cipher is used this way, we say it’s being operated in

Cipher Block Chaining (CBC) mode. You won’t need to code any of

these plaintext transformations yourself. Instead, you can configure

your cryptographic library to make your block cipher operate using

the mode you want. There are other modes that avoid the pitfalls of

ECB mode, but unless you know what you’re doing, we recommend

you stick to CBC mode!

Security | 103

As with stream ciphers, vulnerabilities have been found inmany

of the block ciphers proposed by experts so far. Before you select a

block cipher to use, check which ones are currently recommended

by cryptographers.11

BLOCKCiPHERVSSTREAMCiPHER Block ciphers requiremore comput-

ing power than stream ciphers. When the extra security of the block

ciphers isn’t required, and the plaintext is being created dynamically

(e.g. live encryption of a phone call), it can be better to choose a

stream cipher. They allow the plaintext to be encrypted and trans-

mitted one byte at a time, whereas block ciphers require larger

chunks of data to be encrypted before transmission.

Stream ciphers and block ciphers are part of a larger category

called symmetric ciphers, because they require both communica-

tion parties to have a copy of the same key. In other words, you can

only secure a communication with a symmetric cipher if you have

previously agreed on a shared secret with your counterpart.

3.3 Asymmetry

Before we can communicate using a symmetric cipher, we must

find a secure way to share a secret encryption key with our corre-

spondent. In the past, people had to meet in person or send keys

through a trusted courier. Today, there are ways for two people

who have never met to share a secret key without using a secure

communication link.

Diffie–Hellman Key Exchange

Suppose Ada wants to send a secret message to Charles, but they

haven’t yet decided on a shared secret. There’s a technique, called

the Diffie–Hellman key exchange, that allows Ada and Charles to

jointly select a secret number. It only requires them to send each

11Currently, the best recommended block ciphers are AES and Twofish with

block sizes of 256 bits.

104 | COMPUTER SCiENCE UNLEASHED

other a message that doesn’t even have to be secret. From these pub-

lic messages, it’s impossible for a third party to know which secret

number Ada and Charles selected. Let’s see how it works:

1. Ada chooses a prime number p and some other arbitrary num-

ber g. She then picks a secret number a that she won’t share.

2. Ada sends a message to Charles containing p, g, and a third

number A calculated using the modulo operation:12

A = ga mod p.

3. Charles picks a secret number c, and sends a message to Ada

containing the number C, computed as follows:

C = gc mod p.

4. Ada computesCa mod p, and Charles computesAc mod p.

By some amazing math properties, they both computed the

same number! In other words, their shared secret is:

Ca mod p = Ac mod p,

where Ada is the only one to know a and Charles is the only

one to know c.

For this scheme to be secure, the numbers must be large: a, c, g

and p must be chosen such that each number is several hundred

digits long. Also, the secret numbers a and c must be chosen at

random. If these requisites are met, there isn’t any viable method

for attackers to discover the shared secret key without knowledge

of either a or c.

There is still, however, a security risk that is not covered by

the Diffie–Hellman key exchange: how can Ada and Charles be

sure that they’re really interacting with each other? Maybe, Ada

receives C not from Charles, but from an attacker impersonating

him. Fortunately, cryptographers developed tools that can address

this problem.

12a mod b is the remainder of a÷ b. For example, 27 mod 10 = 7, because

when we divide 27 into 10, the remainder is 7.

Security | 105

Public Key Ciphers

Ciphers we’ve seen so far use the same key for encryption and

decryption. Inspired by Diffie and Hellman, cryptographers devel-

oped a different type of cipher, where a second key is derived from

the main key. Whoever knows the second key can perform the

encryption operation. However, decryption requires the main key.

Ciphers that use different keys for encryption and decryption are

asymmetric ciphers.

With symmetric ciphers there’s only one key, which is known

by everyone involved in the secret conversation. The key is only

useful to that group of people and it must always be a shared secret.

With asymmetric ciphers, there are two keys. The main key is the

private key, and it is only known to one person (or entity). The

second key is the public key, and it is ideally available to everyone.

One pair of private–public keys can serve many different commu-

nication contexts.

Suppose Charles wants to communicate with Ada. If Charles

knows Ada’s public key, he can use it to encrypt his plaintext mes-

sage. He then transmits the ciphertext to Ada, and Ada can use

her private key to decrypt it. If Andrew also wants to communi-

cate with Ada, he can follow the same process, effectively using the

same pair of keys in a different context! However, if Ada wants

to respond to both of them, she will have to use Charles’ public

key to encrypt the message for Charles and Andrew’s public key to

encrypt the message for Andrew.

There are still pitfalls when using public key ciphers. For

instance, when Ada receives ciphertext from Charles, how can Ada

be sure that the message really came from Charles and not an

impostor? Ada’s public key is public, so anyone can send her a

ciphertext claiming to be Charles. Secondly, if Charles is unable to

physically meet with Ada, how can he retrieve a copy of her key

and ensure that the key is legitimate?

Digital Signatures

Besides encryption and decryption, two more operations based

on asymmetric cryptography were created: signing and verifying.

106 | COMPUTER SCiENCE UNLEASHED

The signing operation takes a plaintext and a private key as inputs

and outputs a big number called a digital signature. The verifying

operation takes a public key, a plaintext and a digital signature as

inputs, and outputs true or false depending on the legitimacy

of the digital signature.

The only way to produce a legitimate digital signature for a

given plaintext and public key is to perform the signing operation

with the matching private key. Remember, with asymmetric cryp-

tography, private keys are associated with an individual. Using your

private key to produce a digital signature for a given plaintext is the

digital equivalent of scribbling your signature next to the plaintext.

The only difference is that a traditional signature always looks the

same, and a digital signature looks completely different for each new

plaintext—even if a single letter is changed.

Compute a digital signature and publish it along with the mes-

sage, and anyonewho knows your public key will be able to perform

the verifying operation and attest that you created that signature for

that message. While fraudsters routinely forge physical signatures,

nobody has figured out how to forge a digital signature made with

strong cryptography.

Digital signatures enable us to securely communicate with

anyone, even if attackers are meddling with communication links.

Recall the Diffie–Hellman key exchange: the only issue was that

participants can’t be sure the numbers they’re sending each other

weren’t modified in transit by attackers. When the messages in

the key exchange are accompanied by digital signatures, there’s no

way an impostor can undermine the process. If an attacker meddles

with the messages, the digital signatures don’t match, and people

can know they’re being duped before any information is exchanged.

RSA & ECDSA In 2020, the mostly widely used asymmetric cryp-

tographic schemes are RSA and ECDSA.13 RSA is more versatile:

its key pairs can be used for both encrypting/decrypting and sign-

ing/verifying. ECDSA is computationally less expensive, but can

only be used for signing/verifying. The working mechanisms of

13RSA stands for Rivest–Shamir–Adleman and ECDSA stands for Elliptic Curve

Digital Signature Algorithm.

Security | 107

both schemes are based on advanced mathematics. Follow the spe-

cific instructions to operate each of these schemes, and you’ll be

secure. For instance, when signing with ECDSA, you must always

provide a nonce. If you reuse one, your security will be weak!

Digital Certificates

Imagine Charles wants to send a secret message to Ada, but he

doesn’t know her public key. If Ada sends her key to Charles

through an insecure link, attackers could intercept the message and

change it so that Charles receives their key instead. If he falls for the

trap, their communications will be decipherable to the attackers.

Suppose Charles knows the public key of his trusted friend

Louis, and Louis has a copy of Ada’s public key. Louis can help

by publishing a message with Ada’s key followed by the statement:

“I, Louis, attest that this public key is Ada’s.” He then digitally

signs this message, and makes the message and signature public.

Now, anyone who trusts Louis and has a copy of his public key can

retrieve the message and verify the signature. If the signature is

valid, then they can trust that the copy of Ada’s key in his message

is legitimate—without having ever met her!

A message stating that a given person or organization has a

given public key is called a digital certificate. A broadly trusted

entity that creates and signs digital certificates is called a Certificate

Authority (CA). Verisign is one of the best accredited CAs. In fact,

most computers come out of the box with Verisign’s public key

recorded alongside the operating system. If you get Verisign to

sign a digital certificate with your public key, you can send both

(certificate and key) through an insecure link to virtually anyone,

and they will be able to verify its authenticity.

Asymmetric ciphers are thousands of times more computation-

ally demanding than symmetric ciphers. For this reason, it’s mostly

used for people to validate each other’s public keys with digital

certificates and to establish symmetric encryption keys with signed

Diffie–Hellman messages. Next, let’s see how we can make signing

and verifying long messages less computationally demanding.

108 | COMPUTER SCiENCE UNLEASHED

3.4 Hashing

In the first chapter, we discovered checksums: functions that take

any input and produce a fixed-length output number. If a single

bit of the input changes, the checksum computes a different output.

With the aid of cryptography, special checksum functions can be

crafted such that it’s infeasible to find an input for which the func-

tion computes a specific output. These special methods are called

cryptographic hash functions, and an output of such a function is

commonly called a hash.

CRYPTOGRAPHIC

HASH FUNCTION

OUTPUT

File XYZ

File XYZ Hash

INPUT 209fe8c8a89f3baa

dc73faea674c05d0

d23612841f42d92f

561641f0165426b5

Figure 3.9 Hashing a sample file. This hash function produces a

binary numberwith 256 bits as output, represented in hexadecimal. It’s

infeasible to find a different input that produces the same output.

Hash functions are computationally inexpensive, and this property

can facilitate the implementation of digital signatures. Rather than

performing the computationally expensive task of signing a large

file, we can quickly run it through a hash function and sign the

output. The signature is secure because potential attackers won’t

be able to create another file that has the same hash. Today, almost

every signature is calculated over a hash of the signed data. There

are several other ways hash functions are used. Let’s explore a few.

Malicious Change Detection

Simple checksums are used to detect whether accidental changes

were made to a given chunk of data. However, they don’t help to

catch malicious alterations made by experienced attackers: with

some effort, they can forge data that has the same checksum as the

original data.

Security | 109

Celestial Security Your laboratory’s supercom-

puter stores data from celestial observations. You suspect

someone is changing your data late at night in order to

sabotage your research. The files are large: you can’t

make a private copy of every file. How can you ensure

your data isn’t being maliciously altered?

The solution is straightforward: choose a hash function, and com-

pute the hash of every file. Record all hashes in a pen drive that you

take home. If you suspect the files have changed, calculate their

hashes again. If they are the same as the ones in your pen drive,

you can be certain not a single bit has been changed. That is, unless

the adversary has managed break the security of the hash function

you’re using. Later we’ll see what makes a hash function secure.

Message Authentication Code

A Message Authentication Code (MAC)14 is a way to prove a given

message originated from someone who has knowledge of a specific

key. While a MAC can be implemented with digital signatures, it’s

computationally faster to implement it using hash functions.

Secure Survey You’ll conduct a survey targeting mil-

lions of respondents. You plan to send a unique survey

code to each respondent, saying something like this: “This

person is eligible to answer the survey as ■”, where ■ is

filled according to the name or the ID of each respondent.

How can you allow only the people who received a legiti-

mate survey code to answer your survey?

If you only send the plain message quoted above, attackers could

alter the message and insert whatever data they want! The simplest

way to curb these attacks is to add a large random number to each

survey code and keep records of all the codes you send out. When

a stranger presents a survey code with a large random number, you

consult your database to determine if you indeed issued that survey

code. This solution is cumbersome because you’d have to keep track

of millions of codes.

14Not to be confused with MAC in networking, which stands formedium access

control (see sec. 1.1).

110 | COMPUTER SCiENCE UNLEASHED

With asymmetric encryption, you could use digital signatures

and send each respondent a signed survey code. This way, you

don’t have to keep any records. When a code is presented with

its signature, you verify your own signature in order to determine

whether you created that survey code.

There’s another way to achieve the same outcome, but using a

hash function. First, you generate a random secret key. You store it

carefully and you don’t share it with anyone. For each respondent,

you use the secret key to calculate the following:15

msg ← "Eligible to answer as " + respondent_name

mac ← hash(secret_key + msg)

A survey code can be created by joining msg and mac. When some-

one presents a code, you extract the msg part and use your secret

key to recalculate mac. If the mac number you calculated is exactly

the same as the one in the survey code you were presented, the

code is authentic.16

MACs are useful for people communicating through stream

ciphers. Remember: messages encrypted with any stream cipher

are vulnerable to malleability attacks. If a MAC is added at the end

of the message using the encryption key as the secret, the recip-

ient can recalculate the MAC and verify that the message hasn’t

been tampered with.

Password Handling

Most computer systems authenticate users by requesting them to

enter a password. This means that they must store records of all

passwords. But keeping plaintext copies of passwords is terrible

practice: if the system is hacked, the passwords of every user can

potentially be known to the hackers. In addition, many people have

the bad habit of reusing their passwords, so such a security breach

in one system can lead to breaches in other systems.

Storing encrypted passwords doesn’t solve the problem. With

complete access to a system, attackers can potentially find the key

15Here, + is the concatenation operation: “code” + “energy” = “codeenergy”.
16Depending on the hash function, the MAC might have to be calculated

as hash(key + hash(key + msg)) rather than hash(key + msg). Use a

cryptographic library to generate MACs and ensure they’re calculated properly.

Security | 111

and figure out how the system automatically encrypts or decrypts

passwords when verifying login attempts. At this point, everyone’s

encrypted password can then potentially be decrypted!

For this reason, it’s better to store the hash of each password

rather than an encrypted copy: contrarily to ciphers, hash functions

are not reversible. However, you can still check the password pro-

vided at login by hashing it and comparing it to the hash you’re

storing. If the hashes are the same, the password is correct.17 Yet,

even if a computer system is only storing password hashes, there’s

still a way for attackers to know people’s passwords.

DiCTiONARY ATTACK Attackers can compute the hashes of trillions of

arbitrary passwords and create a sort of dictionary that maps hashes

back to plaintext passwords. Stolen password hashes can then be

looked up in this dictionary. This is a sort of brute force attack,

but the work has to be done only once. It’s effective because most

people use simple passwords. In 2012, a hacker attacked LinkedIn

and leaked the password hashes of over 6 million people; and a dic-

tionary attack could reveal most of them. Storing password hashes

can be almost as bad as storing plain copies of the passwords.

SALTiNG Fortunately, there is a way to prevent dictionary attacks.

Instead of saving the result of hash(password) to a database, the

system can generate a random number called a salt and store it in

plaintext along with the result of hash(password+salt). Since

each user has a different salt, this forces the attackers to try and

brute force each password hash individually. Every time they try to

find the password of a given user, they don’t even know if that user

has a simple password that would take minutes to brute force or a

complicated one that could take centuries.

MULTiPLE HASHiNG ROUNDS There’s a way to make things even

harder for attackers attempting to brute force password hashes.

Instead of calculating and storing the hash of the password, we

calculate and store the hash of that hash. In other words, we store

17This is why computer systems with proper security will never email you your

password during a recovery process: they don’t even know what it is!

112 | COMPUTER SCiENCE UNLEASHED

the result of hash(hash(password+salt)). An attacker then

needs about twice the time to guess the correct password. We can

add as many rounds of hashing as we wish. Since calculating a

hash is fast, some systems perform thousands of hashing rounds.

Remember: if you’re storing password hashes, make sure you’re

using salts and performing multiple rounds of hashing.

Proof of Existence

Hash functions can be used to create proofs that some information

exists, without revealing any part of the information itself.

Secretive Star You’ve composed an amazing song

that you believe will be the next “Hotel California”. You

want to keep the music secret and only release it in your

next album, but you’re scared someone might steal the

song. You want the song notarized, but you’d prefer not

revealing the song even to the notary. How can you prove

you created a song without revealing it?

The first step is to record the song to a computer file. You then

calculate the hash of the file, and ask a notary to record that hash

number. If the authorship of the song is contested, you can reveal

your notarized hash number, along with the song recording. The

only way you could have requested a notary to certify that specific

hash number is by having possession of the recording file.

Online gambling sites also utilize hashing to prove to their

clients that each game is fair. Imagine a simple game where one

bets on the result of a coin toss. If you correctly call the toss, you

double your stake; if you don’t, you lose all of it. First, the online

casino asks you for a number and randomly generates a coin toss.

Suppose it’s heads. The casino then calculates:

hash("HEADS" + user_salt + house_salt)

The house_salt number is chosen by the house and user_salt

by you. The house presents you the hash and then waits for your

guess. If you lose, the house can prove it didn’t cheat you by dis-

closing their house_salt. You can then recalculate the hash, and

Security | 113

check that it matches the hash provided by the house before you

guessed. The house can’t cheat! To check that you understood the

principle, try to answer the following question: why can’t the house

also tell you their house_salt number before you guess?18

Proof of Work

If you continuously calculate hash numbers for different inputs,

eventually you’ll have an output that matches any specific pattern.

For instance, if you are looking for a hash that starts with four zeros

in binary, you can iterate as follows:

hash("heads1") → 101111000001011010000110100100001…

hash("heads2") → 110110011001110110000111101110000…

hash("heads3") → 011100000110100111111100001011110…

hash("heads4") → 110001010001100000110101110100000…

hash("heads5") → 111011100000111101111011111100011…

hash("heads6") → 110010010110101010110100110010011…

hash("heads7") → 110000010011001011011010100100101…

hash("heads8") → 010011111000010101101001111110000…

hash("heads9") → 001110110111101011000101010101111…

hash("heads10") → 11101111000011111110100010110100…

hash("heads11") → 10101011110111001100000111111001…

hash("heads12") → 11101000110010001110100001001001…

hash("heads13") → 00100100001011011101101101000100…

hash("heads14") → 01111100010000100101101011000000…

hash("heads15") → 00101110000011100011001001100000…

hash("heads16") → 01010001000001011111011000000000…

hash("heads17") → 11110011000111011100001001101111…

hash("heads18") → 00111010001011001001100100110110…

hash("heads19") → 00100111100101110100011010000110…

hash("heads20") → 10111101011010100010011111110001…

hash("heads21") → 10110010100010110001000111000010…

hash("heads22") → 01111000100001111111010010001000…

hash("heads23") → 10101111001001011100100001110000…

hash("heads24") → 01110011110010011101111001101011…

hash("heads25") → 00100010101101110000111000110110…

hash("heads26") → 00001110001101011100100110011111…

18If you know both salts in advance, you can easily brute-force the hash before

making your guess, as there are only two hashes you have to calculate: the one

for heads and the one for tails!

114 | COMPUTER SCiENCE UNLEASHED

After 26 different hash calculations, we come across the hash of

heads26. This number, written in binary, begins with four zeros!

Now imagine someone presented you the following:

hash("heads750") → 0000000010111000010110111011000…

Here, the hash begins with eight zeros! You can assume that who-

ever presented you with heads750 had to commit at least some

computational resources to calculate many hashes in order to find

an input that produced a hash with such a pattern. We call this a

proof of work. Even more work has probably been spent in order

to find the following input, as its hash begins with 12 zeros:

hash("heads11759") → 00000000000001110100001001001…

Proof of work can be used to make attacks more difficult. For exam-

ple, by requesting users to present proof of work before making a

request, a server can make it more expensive for attackers to over-

load it with bogus requests. The attackers would have to spend a

lot of computational resources in order to create piles of requests

that the server would accept to process.

BLOCKCHAiN Along with digital signatures and hashing, proof of

work gave rise to a technology that is set to change the world: the

blockchain! Over the next few years, we believe it can provide eco-

nomic sovereignty to billions of people by eliminating middlemen

and adding more transparency, privacy and accountability to our

society. Along with blockchain, entirely new cryptographic tools

with fancy names are being developed, such as “zero-knowledge

proofs” and “homomorphic encryption”. We can only dream of the

power that will be unleashed by these technologies in the future!

Insecure Hash Functions

When two different inputs cause a hash function to produce the

same output, we say there is a collision. With secure hash functions,

the only way to obtain one is brute force: calculating the hashes of

many different inputs until a collision appears by chance.

Security | 115

When hash functions produce outputs of more than 200 bits, it’s

infeasible to find collisions by brute force.19 For all hash functions

currently considered secure, there are no known collisions. Every

so often, a hash function loses its status because cryptographers

discover a method to find collisions that doesn’t rely solely on brute

force. As soon as such a method is discovered for a hash function,

we immediately consider it insecure.

This happened to the MD5 and the SHA1 hash functions, which

were considered secure in the 1990s. A decade later, methods to

reduce the operations required to find collisions were discovered for

both. Currently, there are only a handful of hash functions deemed

secure by cryptographers. As of 2021, themost widely used is SHA2,

and it has remained unbroken for two decades. However, keep in

mind that this could change in the future. If you’re using a hash

function for something potentially sensitive, stay informed so you

can react early if a new attack method is discovered.

3.5 Protocols

As you will recall from the previous chapter, all data traveling inside

IP packets is potentially public information. Hackers who infiltrate

telecom companies can alter IP packets traveling to and from their

targets in order to undermine their communications.20 We can pro-

tect ourselves against these dangers using cryptography. Typically,

secure communication over the Internet involves these steps:

1. Obtain the authentic public key of your counterpart.

2. Generate a shared secret key with your counterpart using

Diffie–Hellman. Verify that the messages you receive are

authentic using the public key from step 1.

3. Encrypt all further communications with a symmetric cipher

using the shared secret key from step 2.

19If a hash function outputs 200-bit numbers, that’s 2200 different possible

hash values. If you took the number of all grains of sand on earth, and multiplied

that by a trillion a few times, you wouldn’t even be remotely close to 2200. Imagine

trying to find a specific grain of sand in such a search space.
20In 2013, Edward Snowden revealed that the NSA has already mounted such

attacks even against leaders of allied countries.

116 | COMPUTER SCiENCE UNLEASHED

When the parties know each other’s public key, it’s possible to

communicate securely with an asymmetric cipher directly, without

resorting to a Diffie–Hellman key exchange. However, doing so cre-

ates a weakness: an attacker who discovers a private key can also

decrypt all previous messages received by the victim, including with

other people. By generating a fresh Diffie–Hellman secret for each

communication session, an attacker who stole a private key will be

unable to decrypt ciphertexts from previous sessions. A communi-

cation scheme with this property is said to have forward secrecy.

Many details must be observed in order to properly encrypt our

communications with forward secrecy. For example, if a nonce is

inadvertently reused or pseudorandom numbers are generated care-

lessly, the entire communication becomes vulnerable to attack. To

avoid these problems, several security protocols have been widely

adopted. These protocols define processes for people to commu-

nicate and to perform the necessary cryptographic steps in a rigid

process, which mitigates the risk of mistakes.

Secure Access

In the early days of the Internet, hosts running a Telnet server typ-

ically accepted connections from strangers and would only ask for

a password before handing over remote access to the shell. This

provided almost no security: that password would travel through

the Internet in plaintext.

In 1995, a protocol called Secure Shell (SSH) was created

to replace Telnet and address its shortcomings. Each server that

accepts SSH connections must have a pair of private–public keys.

In order to guarantee security, a client computer should know in

advance the public key of the server it wants to connect to.21

By default, SSH servers expect connections on TCP port 22.

After a client establishes a connection, the server sends its public

key along with the cryptographic tools that it supports for encryp-

tion, hashing, and Message Authentication Code (MAC). The client

21In many cases, the person or organization operating the client computer also

owns the server, so this task is as easy as copy-pasting the server’s key on a pen

drive. In other cases, the client’s user must obtain the public key from a trusted

source, and the security risks are the same as for any public key cipher.

Security | 117

compares the public key it just received with the one it was expect-

ing. A mismatch of the public keys either means that the server has

been reconfigured or that someone is tampering with the IP packets

as they travel between the parties. The client must then abort the

connection attempt and investigate which one of these is the cause.

If the public key is correct, the client checks the available cryp-

tographic tools indicated by the server and selects which ones to

use. The client sends the server its choice along with the first Diffie–

Hellmanmessage. The server answers with a signed Diffie–Hellman

response. If the signature is valid, client and server calculate a

shared secret key and begin communicating using the chosen sym-

metric cipher. At this point, the client can securely send a password

in encrypted form. Once the connection is closed, client and server

forget their shared key in order to maintain forward secrecy.

Secure Transport

Early Internet users didn’t trust their Web browsers to deal with

things that required high levels of security, such as online bank-

ing. Their concern was justified: with HTTP, information inside

IP packets traveled in plaintext. Therefore, engineers set out to

integrate encryption schemes into HTTP so that people could safely

send sensitive information such as credit card numbers and private

messages from inside their Web browsers.

They developed a generic protocol called Transport Layer

Security (TLS)22 that can secure any TCP connection. Its work-

ing mechanism is similar to SSH. First, the client presents a list of

cryptographic tools it supports and a random number. In response,

the server sends its public key, the selection of tools to be used,

and another random number. The client checks if the public key

is authentic. Client and server calculate a shared secret key and

start sending each other ciphertexts using the cipher chosen by

the server.

Contrarily to SSH, the client is not expected to know the public

key of the server in advance. The server sends its public key along

22At its inception in 1995, the protocol was called Secure Sockets Layer (SSL).

As the protocol was upgraded, it was renamed to Transport Layer Security (TLS),

but many still refer to it by its older name or by SSL/TLS.

118 | COMPUTER SCiENCE UNLEASHED

with a digital certificate. For example, if the server is hosted at

example.com, it must send a public key, plus a digital certificate

from a Certificate Authority (CA) attesting that example.com uses

that public key.

After these steps, encrypted HTTP messages can be exchanged

between client and server. When TLS is used with HTTP, we call

the resulting protocol HTTPS. While HTTP uses port 80 by default,

HTTPS defaults to port 443. Web servers listening to TCP port 443

expect the client to send the first TLS message right after the con-

nection is established.

TLS is used in several other protocols besides HTTPS, includ-

ing SMTP. There are programming libraries that make it easy for

coders to use TCPwith TLS. Instead of creating a regular TCP socket

and manually securing it, the coder uses the library’s functions to

directly create a TLS socket. Behind the scenes, the library takes

care of all the encryption work. Programmers can operate TLS sock-

ets almost exactly as they would operate TCP sockets.

Other Protocols

Many more security protocols exist. For instance, IPsec is a pro-

tocol extension that provides security to IP-based communications.

Contrarily to IP packets, IPsec packets can’t be read or altered while

they travel. IPsec is often used to create Virtual Private Networks

(VPNs), where an Internet connection acts as a physical link so that

a computer can join a distant local network as if it were there.

DNS also has its own secure extension, called DNSSEC, that

extends DNS records with digital signatures. This enables anyone to

verify that a signed DNS record was created by its owner. Without

DNSSEC, a DNS server can send you forged DNS records in order

to direct you towards a malicious host. As of 2020, DNSSEC isn’t

widely used, but adoption is improving steadily.

Protocols for securing wireless communications are widely

used. For example, they prevent people with radio sniffers from

reading the contents of your IP packets transmitted via secure

WiFi. They also allow you to type on a wireless Bluetooth key-

board without the risk of your keystrokes being recorded by an

unauthorized machine.

Security | 119

Today, the lack of email security is a big concern. Emails can

be transmitted securely using SMTP with TLS, but the vast majority

of mail servers store emails in plaintext. Large email providers such

as Gmail or Hotmail may read the emails of their users if they wish.

Most security experts agree that a message should only be readable

by its sender and recipient. Communication systems that adhere to

this principle are said to use end-to-end encryption. Some instant

messaging applications—such as Signal, Threema and WhatsApp—

use end-to-end encryption. New protocols are being developed

actively to make end-to-end encryption widely available for email.

3.6 Hacking

A hacker is a person with strong computer skills who is able to

achieve certain goals in non-standard ways. In popular culture,

hackers are often portrayed as geeky wizards who can infiltrate

military-grade computer systems with a few keystrokes. Although

movies aren’t always realistic, there is some truth to the idea that

hackers are an elite force. Hackers are often specialized in low-level

computing and understand in detail each step a computer takes to

execute a simple action.

Most of the time, hackers are IT security specialists who have a

deep understanding of network protocols and are capable of manip-

ulating individual bits in network packets. They use their skills to

uncover loopholes that allow them to pwn a machine23—to gain

control over it and perform tasks without permission.

This doesn’t mean that all hackers are bad guys. White hat

hackers work hard to ensure no harm is caused by vulnerabilities

they uncover. They mostly search for vulnerabilities in order to

fix them before any harm is done. In contrast, black hat hackers

typically exploit vulnerabilities for personal gain regardless of the

harm they cause in the process.

23Pwning is the cyber-slang spelling of owning: utterly defeating or destroying

an adversary. It often refers to the successful hacking of a system or the leaking

of sensitive data. For reference, the website Have I Been Pwned? will check if

personal data associated with a given email address has ever been made public.

Check it out at http://haveibeenpwned.com.

120 | COMPUTER SCiENCE UNLEASHED

Typically, a hacker looks for ways to bypass (rather than break)

the cryptography that protects a computer system. Designing a com-

puter system is like building a medieval castle. You must anticipate

how different attackers might attempt to infiltrate your castle and

implement countermeasures for each attack vector. Knowing how

hackers operate will help you to develop these countermeasures.

Surprisingly, the most widely used hacking methods involve almost

no technical skills.

Social Engineering

Hacking attacks most often take advantage of flaws of humans

rather than computers. Tricking someone who has access to a

computer system can be much easier than bypassing the defenses

of the system itself. Malicious hackers typically do it by imper-

sonating others through emails, phone calls and text messages.

Sophisticated attackers sometimes counterfeit entire websites. Oth-

ers will even physically show up at a data center impersonating an

employee! These are called social engineering attacks.

Figure 3.10 Courtesy of http://smbc‑comics.com.

Security | 121

Social engineers operate like con artists: they can develop elabo-

rate schemes in order to gain trust and access. The most common

trick is called phishing. It’s when the attacker forges an email that

appears to come from a trusted source. Phishing emails typically

link to a counterfeit website requesting secret information such as

a password or credit card number. More sophisticated ones will

contain malicious software hidden within an attachment.

THEDNCPHiSHiNG During the 2016 United States presidential elec-

tion, hostile hackers crafted a phishing email directed to a member

of the DNC.24 The email warned of suspect Google account activity

and urged the user to change the password. It included a link to a

fake Google web page asking for the user’s login details. As soon

as the user entered the password, the attackers got in and down-

loaded thousands of sensitive emails. Most of them were leaked to

the public, causing considerable political damage and the resigna-

tion of several key politicians.

Attacks like these keep happening time and again. It’s esti-

mated that about 90% of all data leaks originate from a successful

phishing attack. There’s also a variant of this attack vector called

vishing: the hacker impersonates someone on the phone in order

to obtain privileged information or access to computer systems.

THE CIA ViSHiNG In 2015, a 15-year-old British hacker called Veri-

zon and pretended to be a staff employee. He managed to obtain

key information about a special Verizon customer: the director

of the CIA.25 Using this information, the hacker was then able to

impersonate the director himself on a call with AOL tech support.

He correctly answered all security questions, and changed the direc-

tor’s email password. Ultimately, the young hacker gained access

to key military and intelligence documents about CIA operations

in Iraq and Afghanistan.

24TheDemocraticNationalCommittee is the governing body of the Democratic

Party, one of the two main political parties of the United States.
25The Central Intelligence Agency is the United States institution that spies

gathers foreign intelligence to help the president in matters of national security.

122 | COMPUTER SCiENCE UNLEASHED

Social engineering can be mitigated first and foremost by edu-

cating the users of your systems on the importance of checking the

authenticity of emails and web pages before disclosing any private

information. It is also important to enforce strict identity verifica-

tion for every user in your systemswhen they change their password

or update some other security setting. But these precautions are

not enough: in more sophisticated attacks, the victim only needs

to click a web link or to open an attached document for the hacker

to pwn the system.

Software Vulnerabilities

Programmers know that parts of their code doesn’t always work

exactly as intended. As software becomes complex, the different

situations it handles grows exponentially—and so does the risk for

an unexpected situation to occur where a combination of inputs

lead to an unwanted behavior.

These unwanted behaviors may cause the system to crash. They

may cause secret information to be exposed. In the worst case, an

intruder might be allowed to execute any piece of code. We call

the sequence of inputs that leads to such unwanted behaviors a

vulnerability. Let’s now see some common types of vulnerabilities.

BROKEN ACCESS CONTROL This occurs when a system performs a

potentially dangerous action without checking if the user has per-

mission to perform it, for example when developers forget to add

permission checks to their code or when a piece of software is mis-

configured. In 2016, a tech company working with voter data left

their database online without a properly configured password. As a

result, private data from 154 million US voters was exposed. Read

themanuals from all software you choose to use and configure them

properly to restrict access.

SQL INJECTiON It’s the most common vulnerability. It enables a

hacker to run any SQL26 code in a database, which often allows

attackers to arbitrarily read, write and delete data. Imagine that

26SQL is a database language for consulting, inserting and modifying data. We

present it in our first book, Computer Science Distilled.

Security | 123

you’re a school manager and a new student joined your school. The

school clerk enters the name of the new student into a computer.

The school’s management software uses the name typed by the clerk

to send an SQL query like this to its database:

INSERT INTO Students (name)

VALUES ('■');

In this example, the input ■ should be replaced by the software with

the name that the clerk typed into the system. What would happen

if the clerk tried to register the name below?

Robert'); DROP TABLE Students;--

If the school’s software is vulnerable to SQL injections, it will blindly

copy whatever input into the query. Here’s the query that would

now be executed by the system:

INSERT INTO Students (name)

VALUES('Robert'); DROP TABLE Students;--');

When inserting a new student record with this maliciously crafted

name, there is a side-effect: an entire table gets deleted from the

database. To defend against this kind of attack, check all your

inputs and replace any character that can cause side-effects, such

as quotation marks.27

SQL injection attacks are quite common. In 2012, hackers

attacked several US government websites, including NASA, the

FBI and the Pentagon. As a result, personal data from over a

million employees and contractors became publicly available on

the Internet.

Injection attacks are one of many types of vulnerabilities caused

by bad handling of inputs. Youmust check not only the content, but

also the sizes of external inputs you allow into your system.

27Besides the SQL injection, there are other types of injections where an input

is run into a system causing unwanted consequences. For example, when copying

user inputs into an HTML page, ensure the < and > characters are replaced, to

prevent the injection of malicious tags.

124 | COMPUTER SCiENCE UNLEASHED

BUFFER OVERFLOW Before programs can process any input, the

input must be copied to an internal memory space called a buffer.

If the input data is larger than the buffer and there are no checks

in place, data will continue to be copied into the memory and past

the end of the buffer. This means parts of the input end up in unin-

tended locations of the memory. This is called a buffer overflow.

It may cause the system to crash, or worse: if an attacker manages

to write data in a specific location, the host computer might be

tricked into executing parts of the input as code.

When hackers are given the opportunity to execute malicious

code in a machine through a buffer overflow, they will often obtain

full control over it. This type of vulnerability is difficult for hackers

to find, yet it is common in major operating systems and consumer

software. For instance, in 2015, one was found in Adobe Reader,

a widespread application for opening PDF files. Before Adobe

released a software update to fix the issue, hackers could craft

a PDF file containing malicious code that would trigger a buffer

overflow. If users opened the document on their computers, the

malicious code would be covertly executed!

ZERO‑DAYS Many companies offer large bounties for hackers who

responsibly report security vulnerabilities. However, many black

hat hackers and government spying agencies prefer not to disclose

the vulnerabilities they find, since they might sell their details to

other hackers or use them on high-profile targets. Vulnerabilities

that aren’t publicly known to exist and are used by a select group of

hackers are called zero-day vulnerabilities. It’s estimated that every

widely used piece of software or operating system has several zero-

days. This would mean that almost any computer can be hacked by

government agencies and elite hacking groups.28

Exploits

Vulnerabilities are often discovered in mainstream software. After

word about a new vulnerability is out, hackers are quick to code

a generic attack sequence for susceptible systems. Such a piece of

28Because of this threat, the Russian Federal Guard service reportedly stopped

using computers in 2012 for certain communications, favoring mechanical type-

writers instead.

Security | 125

code is called an exploit. Depending on the vulnerability, an exploit

can bring a vulnerable machine offline, expose private information,

or worse: make the computer execute malicious code. If an exploit

is made public, anyone can use it to hack into vulnerable systems

with minimal effort.29

Every day, the number of known vulnerabilities grows, and

there are elaborate tools that help hackers take advantage of them.

For example, Metasploit is a program that automatically screens a

system for known vulnerabilities and runs the relevant exploits. To

do this, Metasploit consults a large, regularly updated database of

vulnerabilities and their respective exploits. It can also scan comput-

ers over a network and probe each one for possible vulnerabilities.

Just as hackers can use these tools to find weaknesses in your

systems, so can you! Organizations that develop and maintain

these hacking tools believe in offensive security: making it easy to

hack into known vulnerabilities so that people can also easily know

where their systems are insecure and require attention.

ROOTKiTS & KEYLOGGERS The bad code hackers try to execute on

their victim’s computer is called a payload. There are two main

types of payloads. Rootkits allow the hacker to covertly access a

shell in the host computer. Keyloggers record everything that’s

typed on the keyboard so that it can later be retrieved by the hacker.

If the hacker manages to make their victims execute these malicious

payloads, they will typically remain hidden and run in the back-

ground undetected, causing harm for a large period of time.

ANTiViRUS SOFTWARE A so-called antivirus inspects all the data that

is stored in a computer and the code that it executes. It tries to

detect payloads and prevent them from being run or propagated

further. Antivirus software providers constantly monitor the Inter-

net and catalog any rootkit or keylogger they can find. However,

hackers relentlessly mutate payloads in order to evade detection.

At any given time, there are several strains of payloads that haven’t

yet been discovered by any antivirus provider. Antivirus software

helps, but it doesn’t defend against sophisticated attacks.

29An amateur who knows little about security and only cares to download and

run exploits created by real hackers is called a script kiddie, or skid.

126 | COMPUTER SCiENCE UNLEASHED

Due to the pace at which exploits propagate, developers are

expected to release updates fixing software vulnerabilities as fast

as possible. Once there is an update fixing a vulnerability, it is said

to have been patched. People using the vulnerable software should

apply security updates as fast possible to avoid getting pwned.

Developers should always stay informed about the libraries

they use to ensure they’re not building on third-party code that has

unpatched vulnerabilities. Likewise, system administrators should

stay informed about the newest patches to the software they’re

running, especially for critical infrastructure such as web servers,

mail servers and database servers.

There’s a resource that can help us stay informed: the Common

Vulnerabilities and Exposures (CVE) public list. As soon as a vulner-

ability becomes known, it is added to the CVE list and is assigned

a number. If you check typical software update descriptions, you

will often see patches to security vulnerabilities referenced by their

CVE number. You can consult the CVE list to be aware of any known

vulnerabilities in the software you’re currently using.30

BOTNETS Some hackers have automated the process of scanning

the Internet for vulnerable computers and running exploits to inject

their rootkits. After years of running automated exploits, some

hackers end up controlling an army of remote computers called a

botnet. Experts estimate there are botnets operating today with

hundreds of thousands of computers. Hackers often rent these bot-

nets for others to use as a launchpad for further attacks. If you

weren’t cautious with your computer’s security, it might secretly be

part of someone’s botnet!

FiREWALLS There’s another type of software that can help protect

computers from harmful exploits: the firewall. It blocks IP packets

that aren’t expected to be transiting in a network. For instance, if a

computer isn’t expected to be waiting for TCP connections initiated

from the outside, a firewall can be installed to block all external

IP packets that attempt to initiate a TCP connection. This makes it

30You can search the list at http://code.energy/cve.

Security | 127

much more difficult for a hacker to communicate with a malicious

payload installed through an exploit.

BACKDOORS Vulnerabilities in computer systems aren’t always

there by accident. A vulnerability that was intentionally inserted

into a system by a programmer or engineer is called a backdoor.

Sometimes, law enforcement agencies or the military will request

hardware manufacturers or software providers to include back-

doors in their systems. Though the intent can be for them to be

known only by good guys, black hat hackers can also discover and

exploit them.

A backdoor can even exist in something as fundamental as an

algorithm. It was uncovered on several occasions that the NSA

pushed for the adoption of purposefully altered cryptographic stan-

dards that they were capable of breaking. In 2004, the NSA even

bribed a lead software provider $10 million dollars to use such sab-

otaged algorithms by default. When it comes to selecting ciphers

and other cryptographic tools for your own systems, do your own

research and find those that are recommended by independent aca-

demic experts you trust.

Digital Warfare

Computer systems are essential to the functioning of a modern

country. They control the communications of both the public and

private sectors. They run power plants and the electrical grid.

They’re the backbone of banks and markets. Air traffic controllers

and their radar systems rely on them. Railroad networks and their

trains are also operated by computers.

It would be a catastrophe if an attacker could hack into all of

these systems at once. Communication lines could be cut, bank

accounts and markets wiped out, power plants shut down, radars

blacked out, trains derailed… in short, it would be Armageddon.

We’ve already witnessed cyberattacks on high-profile military

targets. In 2010, American and Israeli hackers used zero-day

vulnerabilities to write a virus they named Stuxnet. It was pro-

grammed to infiltrate computers inside Iran’s nuclear facilities.

The virus spread slowly and eventually infected computers control-

ling uranium-enrichment centrifuges. It instructed the centrifuges

128 | COMPUTER SCiENCE UNLEASHED

to intermittently spin at different velocities, repeatedly straining

them until they started to break. The virus also falsified instrument

readings to evade detection.

Iranian intelligence eventually discovered the virus, but had

they taken a few more months, they might have missed it: Stuxnet

was programmed to ultimately delete itself, leaving little to no trace

behind. Stuxnet is the most advanced case of digital warfare we

know of, but it wasn’t an isolated act. Many more clues suggest

that digital warfare operations are currently ongoing between the

hacking teams of different countries.

Armed forces of powerful nations invest heavily in Computer

Network Exploitation (CNE): the training of hackers and develop-

ment of exploits for spying and reconnaissance operations. They

also invest in Computer Network Attack (CNA): the deployment

of digital weapons that can sabotage enemy systems, for example

destroying data or disabling communications.

An interesting case of CNA was carried out by the Israeli mil-

itary in 2007. Israeli Air Force fighter jets flew deep into Syrian

airspace as if it were completely undefended and destroyed suspected

nuclear facilities. It later came to light that the Israelis had hacked

computer systems of the Syrian Air Defense Force in order to falsify

radar readings. This allowed the Israeli aircraft to conduct their

operations meticulously and leave without taking a single shot from

their adversaries.

For technologically advanced nations, there’s an upside to the

widespread presence of security vulnerabilities. Lives of their spies

and soldiers on the ground are less at risk. Instead of spies risk-

ing their lives and taking years to infiltrate enemy headquarters

physically, they can now directly hack into enemy computers and

steal sensitive documents remotely. Instead of sending troops or

launching ballistic missiles to destroy a nuclear facility, they can

break into servers and run malicious software to destroy the facil-

ity from within.

At a smaller scale, private corporations also sometimes engage

in digital warfare with each other by infiltrating their competitors

and hunting for strategic documents such as financial reports or

blueprints of secret new inventions. Inspired by the military, they

deal with the threat of cyberattacks by training their employees to

Security | 129

become hackers through so-called red team vs blue team exercises:

the red team must pwn a given computer system, while the blue

team tries to repel the attack. Some companies even hire profes-

sional hackers for the red team.

QUANTUM COMPUTiNG Cryptography and security are always evolv-

ing. Today, the military and intelligence services of powerful

nations are investing heavily in the research and development of

quantum computers. They could well become a reality this century,

and the first nation to obtain one could potentially pwn the world.

In microseconds, these computers will be able to solve problems

that our current supercomputers can’t even solve in a trillion years.

Once fully functional quantum computers are built, almost all

cryptographic algorithms we use today will become insecure. How-

ever, brilliant minds are already working relentlessly on creating

the ciphers of the future that will remain secure when the quantum

computing revolution unfolds.

Defense Checklist

When initiating an attack on your systems, malicious hackers typi-

cally follow some of these steps:

1. Build a fake version of your service and send emails to your

users asking them to type their passwords in.

2. Call your users claiming to be from tech support and make

them reveal credentials or sensitive information.

3. Place covert SQL commands in all inputs handled by your

system that are likely to be part of a database query.

4. Attempt privileged actions such as creating a new user with-

out the proper permissions.

5. Probe for buffer overflows by sending very large chunks of

data to every possible input that’s handled by your system.

6. Build a script for interacting with your authentication soft-

ware and to try to crack passwords via brute force.

7. Scan your network probing for known vulnerabilities.

Preparing your system to handle all these threats is the first step to

improving the security of your systems.

130 | COMPUTER SCiENCE UNLEASHED

Conclusion

Cryptography enables security in the digital world. It allows us

to work with sensitive data even on insecure infrastructure. Dig-

ital security depends on three things: strong cryptographic tools,

software vulnerability patching, and user awareness of social engi-

neering threats.

We learned about the most important cryptographic tools. Sym-

metric ciphers are used for secretly transmitting and storing data.

Asymmetric ciphers are used for digital signatures, digital certifi-

cates, and the establishment of shared secret keys over insecure

connections. Hashing helps us guarantee and verify data integrity

and handle secret passwords.

History teaches us the importance of staying up-to-date with

advancements in cryptography, as the vast majority of crypto-

graphic tools can end up broken one day. It also teaches us that

hackers almost always attack systems by finding ways to bypass

cryptographic defenses rather than breaking them. This can be

done by exploiting software vulnerabilities or simply by manip-

ulating humans into opening the gates. These techniques have

become an essential part of modern warfare, where mission critical

computer systems can be relentlessly attacked by enemy state-

sponsored hackers.

This chapter was an introduction to cybersecurity, where we

presented the basics we believe anyone in charge of potentially sen-

sitive systems should know. If all developers were familiar with

the concepts from this chapter, many of the destructive security

breaches from the recent past could have been be avoided.

Defending computer systems against sophisticated attacks isn’t

easy, and it can sometimes only be done by highly skilled secu-

rity specialists. After all, a successful defense team must protect

against all possible attack vectors. An attacker only needs to dis-

cover a single vulnerability in order to wreak havoc. Because of

this, defense teams generally implement several layers of security

measure. When this is done well, exploiting a single vulnerability

is not enough for an attacker to break into a system.

Security | 131

We have seen that malicious hackers can go to great lengths to

steal data. In some cases, a large data leak can even bankrupt a

company or severely damage a government. But what makes large

amounts of data so valuable? In the next chapter, we’ll explore

how to understand and navigate large amounts of data—legally

obtained data, that is.

Reference

• The Code Book, by Singh

– Get it at http://code.energy/singh

• Serious Cryptography, by Aumasson

– Get it at http://code.energy/aumasson

• Ghost in the Wires, by Mitnick

– Get it at http://code.energy/mitnick

• Hands on Hacking, by Hickey and Arcuri

– Get it at http://code.energy/hickey

CHAPTER 4

Analysis

The future of data analysis can involve great progress.

Will it? That remains to us, to our willingness to take

up the rocky road of real problems, in preference

to the smooth road of unreal assumptions.

—John Tukey

D
ata powers knowledge. Whether you’re conducting a

survey to measure customer satisfaction or running the

Large Hadron Collider to advance particle physics, you

expect to learn something from the data you collect.

Data can easily be misunderstood or misinterpreted. Fortu-

nately, data analysis is here to help us generate reliable knowledge.

Different scientists have different approaches to data analysis, often

depending on the nature of their research and the amount of data

they have access to. This chapter proposes a data analysis work-

flow for programmers, divided in four stages: collection, processing,

exploration, and testing. You’ll learn to:

Collect data reliably and comprehensively,

Process it into a clean and robust dataset,

Kick off exploration by summarizing values,

Explore deeper through data visualization,

Draw conclusions by testing your intuitions.

Even the best of us will often overlook crucial steps in this sinuous

process. We’ll record inaccurate measurements, ignore important

information, or draw incorrect conclusions. What’s more, data anal-

ysis is iterative: at any stage, we may realize that an earlier step

could be improved. It can quickly become a convoluted process.

To avoid creating a mess, we must be methodical. It’s tedious,

but rewarding. Rigorous data analysis helped Charles Darwin to

133

134 | COMPUTER SCiENCE UNLEASHED

discover the origin of species, and may enable SpaceX to make life

multiplanetary. Wield it on your most ambitious projects.

Intelligence

Imagine you own a small, struggling coffeehouse. In order to

develop a profitable strategy, you must know your business. Which

drinks do your customers prefer? How many coffees are sold per

day? Howmuch does an average customer spend? At what time do

most customers come and go? Do your suppliers compare favorably

to others? Did these metrics evolve over the past few months?

The answers to these questions are valuable, as they allow

you to plan effectively and to define key performance indicators to

gauge and track progress. To compile such essential knowledge,

well-managed organizations analyze their data and create periodic

reports. Workers and managers can then easily review progress

and identify areas for improvement.

Many organizations do more than issue reports on their data—

they track it in real time, such that the consequences of their actions

can be monitored on virtual dashboards. Such processes support

decision-making through learning and distributing information,

and they form what people call business intelligence.

INTENS. CARE

07

RESPONSE

avg. arrival time

07’32’’

02

ADMISSION

avg. waiting time

12’44’’

14

INPATIENT

avg. days of stay

14’’

74avg. days of stay

03’’

available vehicles

04’’

available nurses

03’’

available beds

25’’

available beds

12’’

Figure 4.1 Hospital emergency roomdashboard, tracking in real time

the number of patients across different units.

Analysis | 135

Business intelligence isn’t limited to commercial business. Consider

a public hospital’s emergency room where one can use a “business”

intelligence dashboard to track the flow of patients (fig. 4.1). Then,

for example, if there is an unusual spike in waiting times, hospital

admission staff are quickly alerted and can address the situation

before it escalates.

As a result of this intelligence, the hospital is also better pre-

pared for crises. If a serious accident occurs nearby, the hospital

will be able to immediately observe a drop in the number of avail-

able ambulances. Knowing what resources are at hand, the staff

can quickly decide whether to call in reinforcements before the dis-

patched ambulances even return.

Business intelligence and other ventures in data analysis require

you to collect, summarize, visualize, and learn from data. We will

explore all of these topics. If your organization isn’t focused on

business intelligence and knowledge-management, lead by exam-

ple. Study relevant data and share your findings in a compelling

report or on a simple dashboard. You will create immense value.

4.1 Collection

Useful knowledge only emerges from relevant data. It can be dif-

ficult, when facing a colossal volume of irrelevant information, to

identify the data that matters. Refine your search by predefining

your goals. What information is related to these goals?

If your goal is to improve the menu of your coffeehouse, then

the characteristics of both successful and failed products matter.

Collect opinions from your baristas and your customers. Likewise,

data on ingredients, pricing, and sales all relate to your goal. What

if your goal is to improve patient care at a hospital? Look at which

factors are considered to diagnose patients and track their recovery.

Collect data on patients, diseases, and treatments.

Kinds of Data

Try to obtain the full picture when approaching your study. Cap-

ture information from all possible angles, so youwill be less likely to

overlook important details. If you’re measuring temperatures, for

136 | COMPUTER SCiENCE UNLEASHED

example, it can be useful to know the time and place those measure-

ments were made and if it was sunny, windy, foggy, or rainy. As

programmers, we like to use the following categorization to check

that we didn’t neglect relevant data:

NUMERiCAL Score count, physical measurement...

CATEGORiCAL Olympic sport, movie genre, dog breed...

TEMPORAL Date of birth, UTC−08:00 time...

GEOGRAPHiCAL Position, home address, border...

UNSTRUCTURED
Audio recording, email body,

webcam footage, cooking recipe...

The first four kinds of data are said to be structured, as they are

organized in a predefined manner. For instance, electric power is

measured inWatts, every medal at the 1896 Olympics was awarded

for one of nine possible sports, dates can be organized in a calendar,

and international borders are defined along coordinates.

Computers are good at handling structured data. On the other

hand, unstructured data is hard for them to digest. There are spe-

cial methods for extracting structured data from unstructured data.

For example, facial recognition software can take an unstructured

video feed and output someone’s identity as categorical data.

Getting Data

Many of our daily activities are facilitated by computers, therefore

our behavior and actions often leave a digital footprint. Inspect

computer systems to trace this data. Install your own sensors to

collect even more, or change how your company operates. Addi-

tionally, you can often get useful data from third parties.

EXiSTiNG DATA Hospital computers often monitor vital signs of

patients, such as heart rate and body temperature. Restaurant

computers record what was ordered at each table. What data do

your computers manipulate? Scavenge all systems for copies of

useful records. For example, explore the machine hosting the com-

pany’s website and you will most likely find a log of all web visitors.

Analysis | 137

NEW DATA There is always interesting data going unrecorded. For

instance, most restaurants don’t record how happy customers feel

after a meal. To remedy this, each bill can come with a slip for the

customer to rate the service on a scale from one to ten. As long as

you’re not transgressing ethical boundaries, always look for ways

to capture more data. If a restaurant’s billing system isn’t recording

how long clients remain seated, change it.

Figure 4.2 Remember to show empathy when you’re collecting data.

SENSORS We often think of sensors for studying natural phenom-

ena; for example, climatologists need sensors for temperature, air

pressure, humidity, and more. However, sensors can also be valu-

able for businesses: restaurants can use sound meters to track the

ambient noise that their customers experience, and shopping malls

often use presence sensors to record a daily visitor count. Moreover,

web applications often use virtual sensors in order to track the

behavior of users, such as the time they spend on individual pages.

EXTERNAL DATA You can use data that was collected by others. For

instance, real estate brokers will consult third-party data for the

price history of properties. Movie lovers can find data on most

commercial films, and sport enthusiasts can find data pertaining to

most professional matches. Governments typically provide census

data, revealing important national socio-economic indicators. Use

Google Dataset Search1 to query thousands of data collections from

companies, universities, and government agencies. You might find

extra data that’s relevant to your goals.

1Google Dataset Search: http://code.energy/google-data.

138 | COMPUTER SCiENCE UNLEASHED

SCRAPiNG Oftentimes, relevant data from the Internet cannot be

downloaded—it’s only available on web pages. For instance, some

websites compile reviews of bars and restaurants. If you need this

data, write a script that visits those pages and copies the relevant

chunks to your computer. This is called web scraping, and it’s fairly

common—there’s even free software that automates the process.

PRiVACY Be careful not to collect personally identifying information

about people without their explicit consent. It’s simply unethical.

Furthermore, do not trick people into accepting intrusive privacy

policies, as some companies do with their lengthy terms and con-

ditions that nobody ever reads.

Selection Bias

Imagine you own the restaurant collecting customer satisfaction

slips. You’re receiving more submissions than you can process, so

you decide to only survey 10% of clients. If the staff selects who

gets surveyed, they might prefer to pick customers in a good mood.

As a result, data could indicate customers are more satisfied than

what we would observe if everyone got surveyed.

This problem is called selection bias. It could also occur if you

only give slips to clients who sit at specific tables. They might feel

differently because they’re seated in a noisy spot or have the sun in

their faces. This could affect responses, and your data would still

not reflect reality. Let’s consider another example:

Armored Ace You’re Wald, a mathematician

during Wold War II. Enemy air defenses are tak-

ing their toll on the Navy, and you have

mapped out all the shots that returning

planes sustained. The engineers tell you

they must limit weight, thus they can

only add armor to one of three locations: the wings,

the fuselage, or the engines. Which would you pick?

At first, it seems that adding armor to the fuselage or wings is best,

as that’s where most shots hit. However, the data is extremely

biased: you only mapped shots from returning planes. You didn’t

Analysis | 139

map shots from planes that were lost! It turns out many crashes

resulted from engine damage. The best way to save pilots is to

add armor there.

Our biases are often hard to spot because they act on our intu-

ition in ways we don’t expect, and selection bias is no exception.

Always ensure nothing affects which records are collected by select-

ing at random. And be aware that, like Wald, you sometimes simply

can’t collect unbiased data.

4.2 Processing

Collecting a lot of data is like filling up a warehouse with goods.

It can be tempting to dump everything onto random shelves and

become immediately distracted by the cool new stuff we’re storing.

However, the better organized the warehouse, the easier it will be

to work. Organize your data as soon as it comes in.

Data Wrangling

The process of data collection typically yieldsmyriad files: logs, SQL

database dumps, spreadsheets, etc. These are called raw sources.

The relevant chunks of information within these files have to be

identified, extracted, and organized in a way that makes them easy

to access. For example, extracting data from a web server access

log can look like this:

/

/book

URL

/sample.pdf

2019-04-10 01:28:40

2019-04-10 01:28:02

2019-04-10 01:16:10

Timestamp

fe80::10

fe80::7

fe80::10

IP

fe80::10 - [10/Apr/2019:01:16:10] "GET /book HTTP/1.1"

fe80::7 - [10/Apr/2019:01:28:02] "GET /sample.pdf HTTP/1.1"

fe80::10 - [10/Apr/2019:01:28:40] "GET / HTTP/1.1"

Raw source

Dataset

Figure 4.3 Extracting data from a web server access log.

140 | COMPUTER SCiENCE UNLEASHED

Select only relevant data from the raw sources. Extract it and crunch

it into new files using a format that computers can easily under-

stand. We call these new files a dataset. Well constructed datasets

can be directly analyzed without further organization. The process

of transforming raw sources into a dataset is called data wrangling.

Let’s explore the steps involved.

TABULARiZATiON Tables are themost commonway to structure data.

They’re the default structure for data processing: most algorithms

work best on tabular data. Each table stores records of events or

objects of the same kind. The first step of data wrangling is to divide

all relevant data into tables.

In tables, every record becomes a row. The different things we

know about these records become columns. In the context of data

analysis, columns are also referred to as variables. Figure 4.3 shows

a raw text source being copied into a table with three variables: IP,

Timestamp, and URL.

Usually, tabular data is saved in CSV2 format. CSV files can

be readily imported into virtually any programming environment.

If your tabular data is stored in a relational database,3 it’s often

worth the effort to convert the data into CSV files. This ensures

you have one table per data entity, making analysis much simpler:

there’s no need to resolve relationships across different tables in

order to interpret the data.

NORMALiZATiON Always check that cells in the same column are uni-

form. When there are several ways to express something, you must

normalize the data. For instance, if a column contains tempera-

tures, choose either Fahrenheit or Celsius4 and convert other values.

Three examples of normalization are illustrated on the next page.

2Comma-Separated Values (CSV) is the simplest format for storing tabular

data. It is plain text where commas and new lines delimit cells and rows.
3Relational database systems such asMySQL and PostgreSQL use formats that

allow splitting and storing data across multiple tables. Programmers do this in

order to eliminate information repetition. Our first book, Computer Science Dis-

tilled, explains the advantages and disadvantages of relational databases.
4Scientists typically normalize data to the metric system so that their numbers

are easier to manipulate and compare with data from around the world.

99.3778 f

30C

36,11 C

lukewarm

Temperature

98.6 °F

NULL

30.0

37.4

Temperature (°C)

36.1

37.0

NORMALIZE

Figure 4.4 Normalizing temperature. Be consistent in the number of

decimal digits and the use of commas and periods. Remove extra F, C,

or ° characters, and discard or re‑express values that aren’t numbers.

UK

Great Britain

GB

United Kingdom

Citizenship

British

GB

GB

GB

GB

GB

Citizenship

GB

NORMALIZE

Figure 4.5 Normalizing citizenship records. Be ready to handle unex‑

pected cases, especially with old records. Should people from the

Soviet Union be considered Russians? What about Yugoslavians?

¥ 65,000

₤ 440,000

$ 500

Money

$ 500

1988

1977

1970

Year

1999

CONVERT CURRENCY

508.40

502.42

500.00

USD

500.00

1988

1977

1970

Year

1999

1,086.32

2,095.70

6,514.85

USD/2019

758.63

1988

1977

1970

Year

1999

ADJUST FOR INFLATION

Figure 4.6 Normalizing figures from different currencies and years.

Because of inflation, one dollar in 1970 had the samepurchasing power

as six dollars in 1988. On top of that, some currencies don’t even exist

anymore, such as the Italian lira! We need historical exchange and infla‑

tion rates to normalize such numbers.

142 | COMPUTER SCiENCE UNLEASHED

Normalization can also involve splitting a column into two or more.

Imagine that a museum’s database of paintings has a “dimensions”

column containing text describing canvas sizes. It would make

sense to split this into height and width columns, each containing

well formatted numbers in a uniform measurement unit:

30¼ by 21⅞ inMonalisa

The Scream 91 cm, 73.5 cm

Las Meninas 318 x 276 cm

DimensionsName

No. 5, 1948 8 # × 4 # 122

53

74

W (cm)

276

77Monalisa

The Scream 91

Las Meninas 318

H (cm)Name

No.5, 1948 244

Figure 4.7 Normalizing painting dimensions.

CLEANSiNG Always check that your values are of the expected type,

and that they are reasonable. Clear cells that contain absurd data.

This is called data cleansing.

780

677

472

472

Patient

07:03

07:01

180

07:00

07:04

78

Rate (bpm)

61

Time

819

Drop the Beat As the manager of a hospital’s

business intelligence systems, you compile a report with

the heart rate measurements of

many patients. As you inspect

the data, you come across

some astonishing values, such

as 819 beats per minute. What

should you do about them?

A heart rate can never be negative. A quick Internet search informs

us the highest heart rate ever recorded was about 600 beats per

minute. Records outside the range (0, 660) can be safely dropped.5

The cell that reads 819 should be set to NULL, or removed entirely.

Be very careful that zeros are never used instead of NULL when

a cell lacks data. In the temperature records example (fig. 4.4),

5Most humans have a resting heart rate of 40–100 beats per minute. Nonethe-

less, depending on what we’re analyzing the data for, it’s sometimes good to leave

some room for extraordinary but authentic data. Here, a 10% margin above the

record high was chosen arbitrarily.

Analysis | 143

it would have been wrong to normalize “lukewarm” to a freez-

ing 0.0 degrees Celsius! Unfortunately, this careless practice is

all too common. For instance, a lot of software outputs the coordi-

nates (0°, 0°) when it can’t obtain a location.6 No matter the type

of data you have collected, check your zeros—are they accurate

numerical records, or should they be NULL?

DUPLiCATES Ensure your tables have no duplicates: each row must

record something unique. Let’s say a table stores the titles, release

years, and genres of different movies. It should contain only one

row for each movie. If two rows read “Metropolis, 1927,

Sci-Fi”, delete one of them.

Duplicates are harder to spot when data isn’t yet normalized.

If a record has the genre Sci-Fi, and its duplicate, Science

Fiction, a simple search won’t find the problem. Duplicate

names with spelling mistakes or alternate spellings often survive

undetected. Always normalize and cleanse your data, and carefully

inspect similar rows to destroy duplicates. If you use a database

management system, find which built-in tools and functions can

help you do this.

Data Anonymization

Have the utmost respect for data that details people’s lives. Finan-

cial records, health care data, and private messages are only a

few examples of immensely sensitive information that can never

become public. In many organizations, everybody keeps a copy of

the sensitive data they work with. A catastrophic data leak is just a

hack away! Handle and store private data with extreme care.

To mitigate risks, data should be transformed so that the

amount of personally identifiable information is reduced. This

is called data anonymization. Many countries already have laws

that mandate anonymization of data in certain cases.7

6In fact, according to many uncleaned data sources, that empty spot in the

middle of the Atlantic ocean is one of the busiest places on Earth. Nerds even gave

it a name: “Null Island”.
7For an example, see Europe’s General Data Protection Regulation (GDPR).

144 | COMPUTER SCiENCE UNLEASHED

DROPPiNG Discard data that only serves to identify people. For

example, first and last names, social security and tax identifica-

tion numbers, phone numbers, and email addresses will almost

never have any statistical relevance. Data without connections to

demographics, organization goals, and behavioral patterns can be

promptly dropped.

BLURRiNG Some personally identifiable data shouldn’t be dropped.

For instance, age is important demographic information that often

explains behavior—keep it. Exact dates of birth, however, can be

used to find people and endanger anonymity. Store the year of

birth alone: it preserves a sufficient indication of age, and it’s not

personally identifiable. This process of sacrificing precision in favor

of anonymity is called data blurring.

Think of simple ways to decrease the precision of sensitive data.

Suppose you work for a business that needs to keep track of cus-

tomer spending. Will keeping records down to the penny help

understand their behavior? Drop the cents to make records more

anonymous. This also applies to their home address: the zip code

is likely sufficient to target people in a specific area. Blur out the

unnecessary precision.

RE‑iDENTiFiCATiON Even carefully anonymized data can sometimes

be “de-anonymized”. This process is called data re-identification:

if you know enough about someone, you can filter the anonymized

records and identify which one belongs to that person.

Consider an anonymized dataset from a hospital. If you know

someone’s age, sex, duration of stay, and type of illness, you can

probably match his or her exact record in the anonymized dataset.

Data anonymization is a deterrent, not a solution. Give anonymized

data the same level of protection and secrecy as your raw sources.

Reproducibility

It can be tempting to get the data processing phase over with as soon

as possible, without scripting and documenting every step. Such

quick, dirty, and poorly documented jobs are said to have been done

ad hoc. In general, ad hoc data processing is very bad practice.

Analysis | 145

More often than not, new versions of the raw data will emerge.

Sometimes, we simply receive a fresh data dump with additional

records. If transformations were made ad hoc, it is difficult and

time-consuming to repeat them on the new data. Furthermore, it is

difficult to check if errors occurred during ad hoc data transforma-

tions: at any given stage, we can’t compare the state of the dataset

to previous stages. Moreover, an identified error can be very dif-

ficult to revert.

In order to avoid these issues, experienced data scientists

ensure every transformation can be easily repeated. This is called

reproducibility. You could achieve a basic level of reproducibility

by documenting all the ad hoc transformations you perform in a log,

but all the operations would still have to be carried out manually.

Best practice is to write a program that performs all data trans-

formation steps in a pipeline. This way, when data sources change,

we can replay the transformations simply by running the program

on the new raw sources. When working in a team, every member

can inspect this program, which makes it easier to find bugs. Then,

if a bug is found, it can be fixed in the program, and a new corrected

dataset can be generated by running the upgraded program again.

Crucially, never modify your raw sources directly: newly wran-

gled and anonymized data should be written to new files. Your raw

sources hold the truth if ever you suspect there was an error and

you need to roll back operations. If the raw sources contain sensi-

tive information, don’t forget to ensure their access is restricted.

Now that your dataset is squeaky clean, you’re ready for the

next stage: exploration. This is where the real fun begins. In the

coming sections, you will discover the foundations of Exploratory

Data Analysis, or EDA. You will learn to summarize and visualize

your data. As you see the data, your intuitionwill develop. This intu-

ition can generate questions about the underlying phenomena that

shaped the data. These questions can, in turn, guide you deeper in

your analysis: it is always easier to find something when you know

what you are looking for.

146 | COMPUTER SCiENCE UNLEASHED

4.3 Summarizing

We can summarize many important characteristics of a dataset in

a few key numbers. This provides us with a quick idea of what the

data says without having to inspect individual records. Let’s see

some of the most useful summarizing numbers:

Count

Nicknamed “the n”, it’s the number of individual records you have.

For instance, if a health care table describes the hospitalization of

two dozen patients, then n = 24.

Averages

An average is the “central” or “typical” value of a group. There are

several types of averages. The most ubiquitous is the mean: sum

all values and divide by the count. Means are good averages, but

they aren’t perfect. Let’s see why:

Vitalik 217 -2

7

7

DOGE

7

-1

NULL

ETH

2

3

4

NULLSergey

6

8

BTC

NULL

Gavin

Adam

Expert

Roger

Bitcoin Bubble Five friends claim to be blockchain

experts and convince you to buy $100 in cryptocurrency.

Each friend tells you how much

they think the value of your wal-

let will change in dollars within

a week depending on the coin

you buy. You are considering

Bitcoin, Ether, and Dogecoin.

Which of those should you get?

Which is better, BTC’s (8, 6, 7) or ETH’s (2, 4, 3, 21)? It’s hard to

compare groups of numbers. To make it easier, we can summarize

each group into a single number. Let’s try with the mean:

Earning prediction ($)

Coin Adam Gavin Roger Sergey Vitalik Mean

BTC 8 6 · · 7 7.0

ETH · 2 4 3 21 7.5

DOGE 7 7 7 −1 −2 3.6

Analysis | 147

Ether’s higher mean hints that it has the best earning potential.

However, note that Ether’s mean is heavily influenced by a single

extremely high prediction. Maybe Bitcoin is a better bet, despite

its lower mean.

In contrast, the median is an average that stays unaffected by

the extreme values of the group. To obtain the median, sort the

values in numerical order and pick the one in the middle. For Doge-

coin, we find (−2,−1, 7, 7, 7). If the number of elements is even,

no single central value exists, like for Ether: (2, 3, 4, 21). The

median is then the mean of the two central elements. In any case,

the median will always indicate the center of the group: it’s greater

than half the values and less than the other half.

Earning prediction ($)

Coin Adam Gavin Roger Sergey Vitalik Median

BTC 8 6 · · 7 7.0

ETH · 2 4 3 21 3.5

DOGE 7 7 7 −1 −2 7.0

The median isn’t perfect either. Notice how Bitcoin and Dogecoin

exhibit the samemedian of seven dollars, although the experts offer

very different predictions: 100% agree Bitcoin will earn around

seven dollars, whereas 40% say Dogecoin will register losses!

While the mean considers all the numbers of a group, it’s very

sensitive to extreme values. The median isn’t affected by extremes,

but it ignores all values other than the central one. Together, mean

and median are complementary ways to average numbers.8

Variability

Whether we use the mean or the median, we cannot know how pre-

cisely it represents its group of numbers. For example, (9, 10, 11)
and (0, 10, 20) both average to 10, even though the values of the

former are much closer to 10.

8There are more types of averages, such as the harmonic mean, which will

be used in the next chapter. Some averages are ideal for rates of growth, others,

for travel speeds. To learn more, head to http://code.energy/average.

148 | COMPUTER SCiENCE UNLEASHED

The standard deviation of a group of values indicates how far

they tend to be from the mean. When the standard deviation is

larger, the numbers are more spread out. Most programming lan-

guages have built-in functions that compute standard deviation.9

Let’s see how it can be used:

22.2

14.7

MSFT

40.2

27.2

20.2

46.6

GOOG

1.7

-2.4

-0.8

32.9

-5.12018

12.2

-2.8

40.0

AAPL

48.2

2016

2015

2014

Year

2017

Intelligent Investment Your grandma wants to

invest in tech! Since she plans on paying the membership

fees of her bridge club with the

returns, she needs you to deter-

mine which one of the three

stocks she is considering can

provide the most stable yearly

income. Based on their five

year history of returns (in %),

how can you compare the volatilities of these three stocks?

For each stock, you can calculate the standard deviation of its yearly

returns, as this is a good indication of the volatility.

Total return (%)

Stock 2014 2015 2016 2017 2018 Std Dev.

AAPL 40.0 −2.8 12.2 48.2 −5.1 21.8

GOOG −2.4 46.6 1.7 32.9 −0.8 20.2

MSFT 27.2 22.2 14.7 40.2 20.2 8.6

Among these stocks, Apple and Google displayed similar volatility,

whereas Microsoft yielded more stable returns year-to-year.

You can use standard deviation every time you calculate a

mean: it can be a measure of a bowman’s precision, the temper-

ature variations in a town, or income inequality in a population.

Remember to use it to describe how well the mean summarizes

a group of values.

9Variance is another common measure of variability. The variance is simply

the standard deviation squared.

Analysis | 149

Five‑Number Summary

Suppose you are considering a few cities in which to spend your

summer, and for each city you found a database containing the

peak temperature of every single day of the year 2018. How can

you estimate the number of days of enjoyable weather each city

will offer? For starters, the median of daily peak temperatures is

informative: it divides the days such that half were cooler than the

median, and half were warmer. We can repeat this process and

divide the halves into quarters:

32°

30°

28°

26°

Mininimum

Maximum

Median

Lower Quartile

Upper Quartile

33.9°

27.8°

26.1°

24.7°

22.2°

24°

Figure 4.8 Daily peak temperatures (°C) in Los Angeles (July 2018).

Each point represents one day. Sincen = 31, each quarter of the data
comprises eight points.

After the median divides the ordered data points into halves, the

upper quartile divides the top half into quarters and the lower

quartile divides the bottom half into quarters. The upper and

150 | COMPUTER SCiENCE UNLEASHED

lower quartiles—along with the mean, minimum, and maximum—

constitute the five-number summary. Many modern programming

languages have libraries for easily outputting these numbers. Here

are the summaries for daily peak temperatures of a few cities in

the entire year of 2018 (n = 365):

Table 4.5 Five‑number summaries of peak temperatures.

City Min
Lower

Quartile
Median

Upper

Quartile
Max

Rio de Janeiro 20.1 26.8 29.9 32.8 39.1

Los Angeles 13.9 19.4 22.2 25.0 34.4

Honolulu 23.9 27.8 29.4 30.6 33.3

Minneapolis −17.1 0.9 10.6 26.7 37.8

These summaries illustrate interesting factors to consider when

you’re choosing where to spend the summer: even if Minneapolis

is freezing a quarter of the year, the warmest 91 days are warmer

than in Los Angeles!

OUTLiERS We sometimes stumble upon abnormally high or low

values, which don’t seem to be reasonable when considering the

other values in the column. These values typically indicate extreme

events that are markedly different in nature. It pays to single out

these values and study them carefully. In order to identify these val-

ues systematically, scientists define normality boundaries. Values

outside the boundaries, if any, are marked as outliers.

There are many methods to define a normality boundary. For

example, we often start by subtracting the lower quartile from the

upper quartile. This difference is called the interquartile range, or

IQR, and values further than 1.5× IQR from its closest quartile are

then considered outliers.

Analysis | 151

32°

30°

28°

26°

OUTLIERS

Interquartile Range

24°

1.5 × IQR

1.5 × IQR

Figure 4.9 Identifying the outliers of fig. 4.8. We find an interquartile

range of 3.1°, so 1.5 × IQR ≈ 4.5°. The higher boundary is therefore 32.3°,

and the lower boundary is 20.2°.

There are no lower outliers in the temperature measurements of

July 2018 in Los Angeles: all the values are above the lower bound-

ary (fig. 4.9). On the other hand, there’s a cluster of four warm days,

three of which are outliers with highs of 32.4°, 33.3°, and 33.9°.

Those were different in nature indeed: a record-breaking heat

wave struck southern California from July 6 to July 9, 2018. On

the 7th, the high temperatures enabled a huge wildfire to engulf

many streets of Santa Barbara. Over two thousand people had to

be evacuated from the area, and thermometers inside the UCLA

campus recorded their warmest temperatures ever.

Categorical Summary

Records of categorical data contain labels rather than numbers, so

we can’t directly summarize them with an average, a standard devi-

ation, or a five-number summary. However, we can count them.

152 | COMPUTER SCiENCE UNLEASHED

We typically summarize categorical data by counting the num-

ber of times each category occurs. When category counts are

expressed as a percentage of the total count n, we get the frequency

at which each category was recorded. For instance, a table with

each Olympic medal and its winning nation at the 1896 summer

games can be summarized by counting the most frequent countries:

Country Count Frequency

Greece 46 38%

United States 20 16%

Germany 13 11%

France 11 9%

Great Britain 7 6%

Others 25 20%

Correlation Matrix

When it rains, roads become more slippery and visibility decreases;

therefore, car insurance companies expect more traffic accidents.

Imagine you are such an insurance company, and you collected a

dataset with three columns such that each row contains a date, the

amount of rainfall at that date, and the corresponding number of

traffic accidents. You would expect to see the values in the two

last columns increase and decrease together: the more it rains, the

more accidents happen.

When two such columns vary together, we say the columns

are correlated. We can express the strength of the phenomenon

with a number called the correlation coefficient, or “correlation”

for short.10 A correlation coefficient of 0 means the values do not

vary together at all. A correlation coefficient of 1 indicates the two

columns vary together perfectly.

In practice, the correlation coefficient is rarely equal to exactly

0 or exactly 1. To quickly search for relationships between columns

of our tables, we calculate the correlation values for every pair of

10Several methods to measure correlation exist. Each yields a slightly different

coefficient. Here, we use the Pearson correlation coefficient, aka Pearson’s r.

Analysis | 153

columns in the table. The results can be compiled in a correlation

matrix, which summarizes how much columns vary together.

For example, suppose you work for the City of Los Angeles, and

you constructed a table where each row is a day, and columns repre-

sent the daily peak temperature, the day’s average wind speed, rain

volume, the number of traffic accidents, and the number of assaults

registered by the police department. Building a correlation matrix

reveals the relationships among these variables:

Table 4.7 Correlations in daily events (Los Angeles, 2018,n = 365).

wind 1. 0.21 −0.18 0.05 −0.03

rainfall 0.21 1. −0.19 0.19 −0.11

temperature −0.18 −0.19 1. 0.18 0.28

accidents 0.05 0.19 0.18 1. 0.07

assaults −0.03 −0.11 0.28 0.07 1.

From top left to bottom right, there is a diagonal of ones: columns

perfectly correlate with themselves. Furthermore, the top-right half

of the matrix is symmetrical to the bottom-left half: the correlation

between and is equal to that between and . All these

grayed out values offer no additional information and are generally

removed from the correlation matrix for clarity and concision.

Notice that some of the columns have negative correlation coef-

ficients, such as and . Negative correlation values indicate that

columns vary together but in opposite directions: as more rain is

registered, lower peak temperatures are recorded.

When correlation values are close to zero, we say they are vir-

tually uncorrelated. For example, accidents don’t seem affected

by wind speeds. Conversely, the strongest correlation we have is

between and . The data seems to suggest that criminals tend

to be more aggressive when the weather is warmer.

Such a correlation matrix helps us explore how columns are

related to each other. When two variables correlate, investigate the

causes in the real world, you might make interesting discoveries.

154 | COMPUTER SCiENCE UNLEASHED

CAUSALiTY There is a trap. When we find a correlation between

two phenomena, we are often quick to assume that one caused the

other. This is not automatically the case. For example, shopping

malls typically register a high correlation between their sales of sun-

glasses and of ice-cream. Does this imply that wearing sunglasses

makes you crave ice-cream? Or that eating ice-cream causes your

eyes to be more sensitive? No. Always keep in mind that correla-

tion does not imply causation.

Figure 4.10 “Correlation”, courtesy of http://xkcd.com.

TRANSFORMATiONS Columns often have to be transformed for cor-

relations to be found. For example, accidents due to skidding in

your city might correlate poorly with rainfall or vehicle speeds, but

correlate strongly with the amount of rainfall times the speed limit

squared. It can become tricky to find the transformations that reveal

such correlations. If the correlation coefficient of two columns or

their transformations is close to zero, this does not necessarily mean

that those two variables are not related to each other.

Summarizing numbers simplifies and reduces the amount of

information we have to consider. Much of the nuance, however,

remains out of our reach, and it can be difficult to find a path for-

ward. Capturing more of the data by using shapes and colors is the

next step of exploration. A picture is worth a thousand numbers!

Analysis | 155

4.4 Visualization

The mean, standard deviation, and five-number summary provide a

helpful but simplistic overview of a dataset’s story. To uncovermore

clues, we must resort to our visual pattern recognition instincts.

Graphing and plotting allow us to see the data, explore its patterns

and nuances, and reveal anomalies caused either by extraordinary

events or—more commonly—by simple processing mistakes.

Box Plots

There is a graphic representation of the five-number summary, and

it’s called the box plot. The upper and lower quartiles are drawn

as the upper and lower sides of a box, and a horizontal line divides

the box at the median. Whiskers protrude over and under the box

to reach for the maximum and minimum non-outlier values, and

outliers are often added as individual points. Let’s construct a box

plot for the July 2018 temperatures in Los Angeles:

32°

30°

28°

26°

Outliers

24°

Minimum*

Maximum*

Median

Lower Quartile

Upper Quartile

Figure 4.11 Constructing from fig. 4.8 a box plot of daily peak temper‑

atures in Los Angeles in July 2018 (n = 31 days). *ignoring outliers

156 | COMPUTER SCiENCE UNLEASHED

Notice that increasing the amount of data to the entire year affects

the box plot (Figure 4.12). Then, check out how box plots can be

used to compare different cities on a single chart (Figure 4.13).

16°

20°

24°

28°

32°

Figure 4.12 Box plot of daily peak temperatures in Los Angeles in all

of 2018 (n = 365). Only two outliers remain because the entire set of

365data points has adifferent interquartile range andnormality bound‑

aries than the set for July only.

Minneapolis Los Angeles Rio de Janeiro

-20°

-10°

0°

10°

20°

30°

40°

Figure4.13 Boxplotsofdailypeak temperatures in2018. Minneapolis

and Rio de Janeiro do not display outliers.

While a table makes it easy to read the values of a five-number

summary, the box plot makes it easier to compare the distributions

described by different five-number summaries.

Analysis | 157

Histograms

The five-number summary describes the sub-ranges covered by

groups of numbers, and you’ve learned to obtain it in two steps:

you (a) divide data points into groups of equal size, and (b) observe

what ranges they cover. Conversely, a histogram depicts precisely

where within the range data points are concentrated, and it is pre-

pared through the opposite process:

(a) Split the range into intervals of equal size, called bins,

(b) Observe how many data points each bin contains.

Finally, we can (c) plot each bin as a bar whose height represents

the number of data points it contains. The next figure shows the

construction of a histogram with 10 bins, but we could have used

any number. The figures thereafter demonstrate how varying the

number of bins changes that plot and how histograms can help us

compare temperatures in different cities.

20.1° 22.0° 23.9° 25.8° 27.7° 29.6° 31.5° 33.4° 35.3° 37.2° 39.1°

1.9°

(a) Split the temperature range in 10 bins.

20.1° 22.0° 23.9° 25.8° 27.7° 29.6° 31.5° 33.4° 35.3° 37.2° 39.1°

(b) Place 365 daily peak temperatures into their bins.

20.1° 22.0° 23.9° 25.8° 27.7° 29.6° 31.5° 33.4° 35.3° 37.2° 39.1°

10

20

30

40

50

60

(c) Stretch each bin so its height represents the number of dots it contains.

Figure 4.14 Creating the histogram of daily peak temperatures in Rio

de Janeiro, which ranged from 21.1°C to 39.1°C in 2018. Note that in

typical histograms, all bins share the same color.

4 bins 7 bins 10 bins

13 bins 16 bins 30 bins

Figure4.15 Sixhistogramsof the samedataset. Morebinsgiveamore

precise depiction of the distribution. However, too many bins make

your histogram look bumpy and unclear.

Analysis | 159

0° 20°
0

60

Minneapolis

20° 30°

Los Angeles

25° 35°

Rio de Janeiro

Figure 4.16 Histograms of peak temperatures for different cities in

2018. We can immediately see that Minneapolis is the perfect town

if you dislike mild temperatures and enjoy extreme ones—whether

they’re burning hot or freezing cold!

CUMULATiVE HiSTOGRAMS There’s a different way to do histograms.

Instead of each bin’s height only representing the number of data

points it contains, we can also add the number from previous bins.

Therefore, bins only get taller as we move to the right. Here’s how

to obtain such a cumulative histogram from a regular histogram:

20.1° 22.0° 23.9° 25.8° 27.7° 29.6° 31.5° 33.4° 35.3° 37.2° 39.1°

60

(a) Scale down fig. 4.14c.

20.1° 22.0° 23.9° 25.8° 27.7° 29.6° 31.5° 33.4° 35.3° 37.2° 39.1°

73

146

219

292

365

(b) Stack each bin on top of the previous.

160 | COMPUTER SCiENCE UNLEASHED

20.1° 22.0° 23.9° 25.8° 27.7° 29.6° 31.5° 33.4° 35.3° 37.2° 39.1°

20%

40%

60%

80%

100%

73

146

219

292

365

(c) Color in the cumulated bins.

Figure 4.17 Creating a cumulative histogram.

Notice that the bin ending at 33.4°C has a height of 292. This tells

us that 292 days, or 80% of the year, were cooler than 33.4°C. Let’s

now compare our four cities with 10-bin cumulative histograms:

0° 20°
0

365
Minneapolis

20° 30°

Los Angeles

25° 35°

Rio de Janeiro

Figure 4.18 Cumulative histograms of peak temperatures (2018).

When observing any graph, always inspect its scales. The tempera-

tures in Minneapolis and Rio de Janeiro might seem rather similar

in fig. 4.18, but these plots have very different scales on the hori-

zontal axis. If we plot one histogram over the other, the differences

between the cities become apparent:

Analysis | 161

-10° 0° 10° 20° 30°
0

73

146

219

292

365

Figure 4.19 Comparing peak temperature cumulative histograms of

Minneapolis (gray) and Rio de Janeiro (colored). The bins were care‑

fully defined on the same temperature intervals for both cities. Since

the ranges don’t match, Rio de Janeiro gets some empty bins!

Scatter Plots

So far, we’ve seen plots that explore one variable—or column of

data. The scatter plot explores how two variables relate to each

other. In this plot, each data record is one dot. A dot’s position on

the vertical axis represents the record’s value in one column. The

dot’s position on the horizontal axis represents the record’s value in

the other column. The next figure shows how to construct a scatter

plot from the data points in fig. 4.11:

24° 28° 32°
Temperature

30

40

50

60

As
sa
ul
ts

Jul 06 37

Jul 09

Jul 07

32.8°

48

Date Temp.

55

31.7°

33.3°

Assaults

41

56

26.7°Jul 05

Jul 08

33.9°

…

Figure 4.20 Los Angeles number of recorded assaults versus daily

peak temperatures in July 2018. Temperature outliers in red.

162 | COMPUTER SCiENCE UNLEASHED

15° 20° 25° 30° 35°

Temperature

20

30

40

50

60

A
ss

a
u

lt
s

2 m/s 4 m/s 6 m/s

Wind

20

30

40

50

60

A
ss

a
u

lt
s

Figure 4.21 Number of assaults versus daily peak temperatures, and

then the average wind speed for the rest of 2018.

From the correlation matrix tab 4.7 on page 153, we know assaults

and wind aren’t correlated, but that there is a correlation of 0.28

between assaults and temperatures. Can you see from the plot that

warmer days tend to have more assaults?

Analysis | 163

It will be easier to spot a correlation with temperature if we

have data that covers a greater range of temperatures. Let’s try the

daily recorded number of criminal offenses in Minneapolis:

-20° 0° 20° 40°
Temperature

20

40

60

80

100

O
ffe
ns
es

4 m/s 8 m/s
Wind

Figure 4.22 Number of offenses versus daily peak temperature and

average wind speed in Minneapolis for every day of 2018.

-20° 0° 20° 40°
Temperature

20

40

60

80

100

O
ffe
ns
es

4 m/s 8 m/s
Wind

Figure 4.23 Number of offenses recorded inMinneapolis from2010 to

2018. Each plot hasmore than 3000 points, thereforemany overlap and

the visualization is difficult to interpret.

-20° 0° 20° 40°
Temperature

20

40

60

80

100

O
ffe
ns
es

4 m/s 8 m/s
Wind

Figure 4.24 Minneapolis number of recorded offenses from 2010 to

2018 at 20% opacity. Darker shades of gray form in the areas with a

higher concentration of points. The plot on the left has a correlation

coefficient of 0.58: warmer days tend to suffermore crimes. There is no

apparent pattern between wind and crime, and the data points shown

on the right yield a −0.11 correlation.

-20° 0° 20° 40°
Temperature

20

40

60

80

100

O
ffe
ns
es

Super Bowl LII

?

04-Jun-18 30.6° 10

Date Temp.

114

Offenses

-12.7°04-Feb-18

…
…

Figure 4.25 Pay close attention to outliers: the lonely dots far fromall

the others. Find out to which rows these dots correspond. The cold day

withmany offenses is 4 February 2018, when the Super Bowl took place

in Minneapolis! The warm day with few offenses has no obvious expla‑

nation, so it could very well be an issue with the police department’s

data collection system.

Analysis | 165

Time Series

If your data points all have an associated time stamp, you can plot

them in chronological order and trace a line connecting consecu-

tive ones. This type of graph is called a time series. It can reveal

interesting relationships and patterns between your data and time.

Here’s a time series of daily peak temperatures in Los Angeles in

July 2018, using the same data as fig. 4.11:

July 1 July 8 July 15 July 22 July 29
20°

25°

30°

35°

Figure 4.26 July 2018 Los Angeles peak temperatures.

When a time series has many points packed too close together, vari-

ations between consecutive points can add a lot of jitter to the plot.

Observe what happens if the same plot is made with every single

day of the year, using the same data as fig. 4.12:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
10°

15°

20°

25°

30°

35°

Figure 4.27 Los Angeles peak temperatures over all months of 2018.

In such cases, we can smooth the plot to make it easier to read. One

common technique is called the moving average: each data point

is replaced by the mean of itself and a few preceding points. The

number of preceding points used is called the window size. Let’s

see how this looks like.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
10°

15°

20°

25°

30°

35°

(a)Window size of 7 days.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
10°

15°

20°

25°

30°

35°

(b)Window size of 15 days.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
10°

15°

20°

25°

30°

35°

(c)Window size of 30 days.

Figure4.28 Moving averagesof daily peak temperatures over the year

2018 in Los Angeles at different window sizes. Increasing the window

sizemakes themoving average of our time series smoother every time.

Analysis | 167

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
-10°

0°

10°

20°

30°

40°

Figure 4.29 Comparing the 15‑day moving averages of peak temper‑

ature time series of Minneapolis (gray) and Rio de Janeiro (colored).

We already knew from the box plots (fig. 4.13) and the histograms

(fig. 4.19) that peak temperatures in Rio de Janeiro and Minneapo-

lis have very different distributions. Now, we can clearly see that

they are almost the same from June to August, when it’s summer

in Minneapolis and winter in Rio!

Many other events are also influenced by the time of year. For

instance, ice-cream sales are higher in the summer, and occurrences

of respiratory illness are higher in the winter. Once you plot your

data in a time series, seasonal patterns become very easy to spot.

In general, time plots are useful when we need to understand

how a variable grows or shrinks over time. For example, the price of

storing digital data has reduced, fueling the data science revolution.

To fully realize how dramatic the change has been, let’s plot the

cost of data storage over time:

1985 1990 1995 2000 2005 2010 2015
$0

$20k

$40k

$60k

$80k

$100k

Figure 4.30 Inflation‑adjusted storage cost of 1 GB.

168 | COMPUTER SCiENCE UNLEASHED

In 1985, it cost over $100,000 (in 2019 dollars) to store one giga-

byte of data. In 2018, it cost less than 3¢. As the scales of these

prices are several orders of magnitude apart, the line in the plot

flattens out after 1995 and it’s difficult to discern what’s happening

from that point onward.

LOGARiTHMiC SCALES There is a helpful trick to view data across

such orders of magnitude: trade the common linear scale for a

logarithmic scale. A linear scale is defined such that each tick is

equal to the previous plus some number. In fig. 4.30 on the previous

page, each tick on the vertical axis was equal to the previous plus

$20k. On the other hand, a logarithmic scale is defined such that

each tick is equal to the previous times some number. The number

10 is often chosen, as it makes the ticks display nice round numbers:

1985 1990 1995 2000 2005 2010 2015
1¢

10¢

$1

$10

$100

$1k

$10k

$100k

Figure 4.31 Inflation‑adjusted storage cost of 1 GB (log scale).

Observe how storage prices from 1995 to 2018 no longer resemble a

flat line. It is now possible to precisely read the storage prices from

each year. From 1985 to 2010, the price per GB became roughly

ten times cheaper every 5 years, except between 1995 and 2000,

where prices decreased by a whopping factor of almost 100!

In 2011, terrible floods struck Thailand, claiming the lives

of 815 people and affecting millions more. Many factories were

badly damaged, disrupting global supply chains for hard disk drives

throughout 2012. This tragic event explains the very visible spike

in prices on fig. 4.31.

Analysis | 169

Maps

When you have geographical data, show it on a map. If, for exam-

ple, you know the daily peak temperatures for every county in the

USA, you can create a heat map:

20°

25°

30°

35°

40°

Figure 4.32 Meanmaximumdaily temperature in July 2018, revealing

cool areas around the Rocky and Appalachian mountain ranges.

Mapping is not limited to geographical data. For instance, when

aerodynamics engineers obtain temperature values for every point

in space of an airflow, they will map it in three dimensions:

Figure 4.33 Fan‑generated wind cooling down an electronic circuit

board. Theair at the vent (right) is slightlywarmer thanat the fans (left).

170 | COMPUTER SCiENCE UNLEASHED

4.5 Testing

As we explore data and identify patterns, we often devise theories

to explain what we observe, and many of those turn out to be mis-

guided or wrong. As the famous cosmologist Carl Sagan said during

his last ever interview:

“Science is more than a body of knowledge. It is a way of

thinking; a way of skeptically interrogating the universe with

a fine understanding of human fallibility.”

It can feel deeply unnatural to question one’s own assumptions,

and subsequently, it is challenging to explain patterns conclusively.

Thankfully, scientists value skepticism and developed tools to help.

Hypotheses

In order to address a question or intuition without drawing inac-

curate conclusions, start by framing it properly. Express it as a

hypothesis: a statement that can be supported or rejected by data

you can collect. You will have to test the hypothesis, so do not

assume it’s true or false yet. Make your hypothesis simple and

objective, so that it’s easier to test.

Taste budTest Your coffeehouse inMinneapolis was

losing its vegan customers. Ten days ago, you decided to

update the menu and offer green tea and coconut-milk

ice-cream. You did so without any research, based on the

following intuitions:

Vegan customers craved green tea on yoga days,

Customers didn’t like the old ice-cream selection.

Now that the new menu is up and running, you wish to

conduct a study to determine whether changing the menu

was a good decision. Can you express each of your intu-

itions as a hypothesis? Try to formulate one that relates

to your goals and that you can easily test.

For ‘Intuition ’, it’s hard to find an objective measure of craving.

However, one of the goals of your business should be to sell your

Analysis | 171

products, so you can express the hypothesis as follows: Vegan cus-

tomers buy green tea on yoga days. Testing this hypothesis could

help you understand if your decision is likely to regain the loyalty

of vegan customers. However, it requires some work: you must

conduct a survey with personal questions to determine which cus-

tomers are vegan yogis.

‘Intuition ’ is tricky to test, as surveying long-time customers

can expose you to selection bias: you can only survey those who

return, who are more likely to have enjoyed the old menu. How-

ever, this intuition is intimately related to your business goal of

selling products, so a hypothesis could be:

Ice-cream sales are higher with the new menu.

This hypothesis doesn’t give you much insight as to why you are

achieving or not your ice-cream goals, but at least it is easily

testable: your accounting system has likely been collecting sales

data before and after the menu change. You have all the data you

need already! Using an average, let’s summarize and compare the

last 100 days of the old menu with the first 10 days of the new one:

Menu

old

old

old

new

old

new

Sales

$118

$133

$165

$66

$172

$73May 08

Date

Jan 20

Apr 29

Jan 21

Apr 28

Jan 19

days

days

old

new $107.3

Menu

$48.5

Mean

…
…

Figure 4.34 Summarizing daily sales in order to test ‘Hypothesis ’.

This data agrees with the hypothesis: sales were higher when the

new menu was used. Is this evidence sufficient to confirm our

hypothesis that the new menu would increase ice-cream sales?

172 | COMPUTER SCiENCE UNLEASHED

No. No conclusions can be drawn by comparing averages over

this small dataset. Many other factors may have affected the data.

Changes in customer behavior could stem from other changes made

to your coffeehouse, such as the table layout. They could result

from factors outside of your control, such as the weather:

Feb 04 Mar 04 Apr 01 Apr 29

-10°

0°

10°

20°

30°

$0

$50

$100

$150

$200

$250

Figure 4.35 Daily peak temperatures and ice‑cream sales at your

coffeehouse in Minneapolis. Temperatures are shown on top in black

(left scale), ice‑cream sales are shown under in color (right scale).

Regardless of your menu, customers will surely eat more ice-cream

on a hot day than during a blizzard! Maybe higher temperatures

caused the increase in sales, not the new menu. Maybe you were

lucky. And if you can’t be sure of what caused the change in sales,

how can you know if the result of the hypothesis test reflects the

truth? In the next sections, we’ll delve into the methods scientists

developed to address this issue with diligence.

Experiments

Good researchers develop procedures to reduce the uncertainties

around their results. A scientific procedure to test a hypothesis is

called an experiment. Hypotheses can only be properly tested via

well-designed experiments.

The first step of experiment design is to identify the variables

you need to measure and the data you must subsequently collect.

Analysis | 173

For ‘Hypothesis ’, these variables are sales and menu. We already

have them as columns in fig. 4.34.

There are always other variables that affect those you wish to

study. We call them extraneous variables, and watch out: they can

potentially lead you toward wrong conclusions. Try to collect data

on extraneous variables if your records don’t already include them.

If you observe fig. 4.35 closely, you will notice peaks in sales

seem higher when the weather is warmer. The sales are fairly irreg-

ular, but we can notice a peak in sales every seven days. Maybe

people eat more ice-cream on weekends! We already identified two

extraneous variables: temperature and day of the week.

When you’re exploring the data, keep searching for clues to

identify different extraneous variables. When you find them, make

sure your records are updated accordingly:

old

$172

Jan 19

$118Jan 20

Jan 21

old

Menu

$73

Apr 28 $165

$66

May 08

Sales

new

new

$133

Date

old

Apr 29

old

Tue

5.6°

3.9°

22.2°

Sat

Day

14.4°

6.7°

Sun

Sat

Fri

Temp.

Sun 20.6°

…
…

Figure 4.36 Collecting data on factors that may influence sales.

In a well-designed experiment, the hypothesis is tested using

records where the variance of extraneous variables is minimized.

However, this may severely restrict the number of usable records.

For instance, if we only consider the same day of the week with a

similar peak temperature, only two data records remain:

174 | COMPUTER SCiENCE UNLEASHED

20.6°

17.8°

TempDay

Sun

Sun

Menu

new$172

Apr 22

Apr 29

SalesDate

$179 old$179

$172 new

Sales

old

Menu

Figure 4.37 Comparing sales in similar conditions.

Sales were lower with the new menu in this experiment. The data

does not support ‘Hypothesis ’, therefore we’re a bit closer to

rejecting it. But can we reject it?

No. Even when designing an experiment in a controlled envi-

ronment, we can never control everything. There are always other

factors that affect the data, some of which are difficult to identify.

Could you possibly have known that your sales were boosted both

by a group of competitive eaters visiting the area and by an unusual

number of homes with malfunctioning freezers? Conversely, could

you possibly have known that an unexpected surge of pollen aller-

gies kept people home, reducing your potential sales? The world is

too complex for you to identify all extraneous variables, no matter

how hard you try.

NOiSE At some scale, the complexity of our universe will always

yield random fluctuations independent of any extraneous variables

we can find. Such random unexplained fluctuations are colloquially

called noise. When too few data points are available, it’s difficult to

know which fluctuations are noise and which are not, and the truth

gets blurred. Ultimately, the more data we have that supports a

hypothesis, the closer we get to confirming it. Conversely, the more

data we have that disagrees with the hypothesis, the closer we get

to rejecting it. Unfortunately, in fig. 4.37 there are only two data

points, and that’s insufficient to confirm or reject the hypothesis.

We need more data.

Since it decreases uncertainty, one might be tempted to keep

collecting more data forever. Let’s try to determine how much data

is enough to be confident that the hypothesis test result reflects

the truth.

Analysis | 175

P‑Values

Since it’s always possible to be unlucky and obtain data that sup-

ports a false hypothesis, statisticians developedmethods to estimate

how unlikely it is that this occurred. This kind of method is called

a statistical hypothesis test:

Ice-cream sales are

higher with new menu.

STATISTICAL

HYPOTHESIS

TEST

p-value

days of

sales data with

old menu

days of

sales data with

new menu

Figure 4.38 Statistical hypothesis test in action.

The probability that we were unlucky is called the p-value. The

smaller the p-value, the closer we are to confirming the hypothe-

sis. If the hypothesis is true, then collecting more data will tend

to decrease the p-value.

There are many different types of hypothesis tests, each best

suited for a specific scenario. For the p-value to be meaningful, do

your research and make sure you pick one that corresponds to your

data and hypothesis.11 They all work in a similar way: you input

experimental data, and they output a p-value for the hypothesis

you’re testing.

A probability is always a number between 0 and 1, and the

p-value is no exception. Obtaining p = 0.2 means there’s a 20%

chance that your data supports a wrong hypothesis out of bad luck.

If you’re uncomfortable with that risk, collect more data. Run the

test again, and if your hypothesis is correct, the p-value should

11For an overview of common hypothesis tests and how to use each test, see

http://code.energy/hypothesis-test.

176 | COMPUTER SCiENCE UNLEASHED

decrease. Now, will this finally be enough to confirm or reject the

hypothesis with absolute certainty?

Nope. A p-value is never exactly 0 or 1. In other words, never

claim a 0% or 100% chance that a hypothesis is false. Further-

more, be very careful in interpreting these probabilities because the

result of a hypothesis test can only be as reliable as the data itself.

If your data suffers from selection bias, then your p-value is irrel-

evant. Hypothesis tests do not substitute controlled experiments,

they merely complement them.

STATiSTiCAL SiGNiFiCANCE Even though the p-value can never be

zero, there comes a moment when we must be able to draw conclu-

sions. Usually, we define a maximum acceptable p-value that our

hypothesis test should yield for it to be considered probably true.

This threshold is called the significance level. When a p-value is

below it, we can say there is statistically significant evidence sup-

porting our hypothesis. Scientists typically work with significance

levels between 0.05% and 5%.

Drawing conclusions from data without statistical significance

is a common mistake. In many cases, we cannot possibly obtain

enough data to produce statistically significant evidence supporting

our hypotheses, and therefore we have to base our decisions on cer-

tain assumptions. It is important to recognize the limitations of our

knowledge, and be ready for our assumptions to be proven wrong.

Figure 4.39 “Boyfriend”, courtesy of http://xkcd.com.

Confidence Intervals

If we could try the new menu for an unlimited number of days, the

mean daily sales would represent its true performance. Can we be

Analysis | 177

confident that the mean daily sales of $107.3 we obtained with our

experiment is equal to that truth? In other words, what p-value

would we get by testing the following hypothesis?

The mean of daily ice-cream sales is $107.3.

It is nearly impossible to obtain exactly $107.3 of mean sales as

we keep on collecting data, therefore the chance that we do not

get $107.3 is almost 100%. In other words, the p-value would

be almost 1, which is far from the near-zero significance levels we

want! In order to obtain a lower p-value, we must tolerate values

close to $107.3. For example, we can test if the mean is between

A = $97.3 and B = $117.3. The hypothesis then becomes:

The mean of daily ice-cream sales is between $97.3 and $117.3.

As we make the gap between A and B larger, the p-value gets

smaller. When the gap is set such that the p-value is equal to our

chosen significance level, we call (A,B) the confidence interval.

Typically, we input our data and the significance level we are tar-

geting into a function called a confidence interval calculator, which

then outputs (A,B). There are different confidence interval calcu-

lators to choose from depending on the nature of your data and of

the hypothesis. However, they all work in a similar way:

days of

sales data with

new menu

The mean of daily ice-cream

sales is between A and B.

targetCONFIDENCE

INTERVAL

CALCULATOR

p-value

Figure 4.40 Finding the confidence interval.

Confidence interval calculators often ask for a confidence level

instead of a significance level. The confidence level is equal to one

178 | COMPUTER SCiENCE UNLEASHED

minus the significance level. In other words, a confidence level of

95% is the same as a significance level of 5%; and conversely a

confidence level of 99% is equivalent to a significance level of 1%.

Conclusion

Data analysis is a process youmust follow diligently in order to draw

convincing conclusions. To ensure the integrity of your results,

channel your data through every step of the pipeline:

Summarize

Visualize

Wrangle

Anonymize

Collect

Process Explore

Test

Save yourself headaches and do not skip steps or change their order.

If the exploration phase reveals you have insufficient data to test

your assumptions, make sure all phases are carried out thoroughly

and repeated in order: collection, processing, exploration, and only

then testing.

COLLECT When starting out, your primary focus is to gather and

stockpile data of every possible type and from every possible source.

As you scrape existing data or create mechanisms to capture new

data, your main worry is to steer clear of any selection bias.

PROCESS Once the data is collected, make it easy for a computer to

understand. During this phase, be a wrangling perfectionist: make

sure every aspect of your dataset is organized and that only clean,

valid, and consistent data remains. Moreover, you have the grave

responsibility of anonymizing every last bit of sensitive data.

Analysis | 179

EXPLORE Once it is clean, summarize and visualize your dataset.

Compare different groups of values, observe how they are dis-

tributed across their ranges, and plot them over time. When you

detect abnormal properties, investigate the causes. Explore how

your data reflects the intricacies of the real world.

TEST Finally, how do the insights you gained from exploration

relate to your goals? Inspect the tables and plots that could affect

decision-making. Formulate hypotheses and test if your data con-

firms them with statistical significance.

Abiding by these principles empowers you to make decisions based

on evidence rather than intuition only. Yet, the best is still to come.

By transforming your data a bit more, you can feed it to algorithms

that will provide complex information about the future that human

intelligence alone could never guess. Are you ready?

Reference

• The Data Science Design Manual, by Skiena

– Get it at http://code.energy/skiena

• Everything is Obvious, by Watts

– Get it at http://code.energy/watts

• Naked Statistics, by Wheelan

– Get it at http://code.energy/wheelan

CHAPTER 5

Learning

The question of whether computers can

think is like the question of whether

submarines can swim.

—Edsger Dijkstra

P
redictions inform decision-making. Many hundreds of

years ago, ancient Mayans observed crops and astronomi-

cal patterns to predict yield and decide the best moment to

plant their corn. Today, North American farmers can make more

precise decisions thanks to advanced weather forecasting.

One way to predict the future is to look at the past, as often

the best predictor of future outcomes can be found in past patterns.

It’s intuitive: if you notice a bar gets full most nights there’s an NFL

game, you start believing it will be busy the next NFL night.

Machine learning is using computers to crunch data on past

events, find patterns, and unleash their predictive powers. This

technology is everywhere. When you buy car insurance or get a

loan, companies record your data. Over time, banks learn to predict

who’s likely to default their debts, and insurers guess who might

crash their cars. This chapter shows you how they go about it. You

will learn to:

Turn collected data into features,

Train a machine and evaluate it,

Validate its predictions methodically,

Fine-tune its gears for better results.

Without computers, we would need to spend a lot of time and

energy and consult top experts to make predictions. With com-

puters, we can automate them at scale. For example, banks can

181

182 | COMPUTER SCiENCE UNLEASHED

approve loans automatically, saving on personnel costs while serv-

ing customers faster. In health care, machines can automatically

screen high-risk patients in order to deliver preventive care and

save more lives.

Models

In the field of machine learning, an algorithm that makes predic-

tions is called a model. Many different types of models exist, each

making use of different math tricks. Some of these tricks are quite

advanced, but don’t worry: we’re not diving into how models work.

Instead, we’ll learn how to use models.

Imagine you’re a real estate agent in the town of Sweetwater,

and you want to predict the price that three apartments will sell

for. You first gather some clues, such as their distance to the city

center, their age, and their area. You can organize them in a table

X , where each column is a type of clue, known as a feature, and

each row corresponds to one apartment sale. You can then append

a column ypred for your predicted prices:

16 yr 40 m23.4 km ?

114 m2 ?

Pred. Price

10 yr

4 yr

Distance

68 m22.4 km

0.4 km

Area

?

Age

X y pred

<latexit sha1_base64="YBHyPoWM+kDR4O0yhU4CIbAYgJQ=">AAACAnicbVDLSgMxFM34rPU16krdDBahqzIjii4LgrisYB/QKUMmk7ahSWZI7ohlKG78AT/CjQtF3PoV7vwB9/6B6WOhrQcuHM65N7n3hAlnGlz305qbX1hcWs6t5FfX1jc27a3tmo5TRWiVxDxWjRBrypmkVWDAaSNRFIuQ03rYOx/69RuqNIvlNfQT2hK4I1mbEQxGCuxdP+liCbHI+oPAB3oLSmTmhWgQ2AW35I7gzBJvQgrlveDh6+K7VgnsDz+KSSqoBMKx1k3PTaCVYQWMcDrI+6mmCSY93KFNQyUWVLey0QkD59AokdOOlSkJzkj9PZFhoXVfhKZTYOjqaW8o/uc1U2iftTImkxSoJOOP2il3IHaGeTgRU5QA7xuCiWJmV4d0scIETGp5E4I3ffIsqR2VvOPSyZVJo4jGyKF9dICKyEOnqIwuUQVVEUF36BE9oxfr3nqyXq23ceucNZnZQX9gvf8A9P2cEg==</latexit>

Figure 5.1 Apartments for sale in Sweetwater.

Filling in the column ypred is no easy task. On its own, the fea-

tures table X does not provide any reference price points. If the

apartments were in Tokyo or Timbuktu, the prices would surely be

different! In order to make decent predictions, we need examples

to learn from. Let’s add to the table apartments that were already

sold in Sweetwater, labeled with their true sale price y, and call

these records the labeled dataset.

Learning | 183

16 yr 40 m23.4 km ?

True PricePred. Price

?

?0.4 km

10 yr

AreaDistance

2.4 km

Age

68 m2

4 yr 114 m2

X

$840,000

$540,000

$745,000

$185,000

10.6 km

2.1 km

91 m2

8 yr

90 m23 yr

9 yr

0.5 km

3.5 km 26 yr 35 m2

120 m2

y

LABELED

DATASET

y pred

<latexit sha1_base64="YBHyPoWM+kDR4O0yhU4CIbAYgJQ=">AAACAnicbVDLSgMxFM34rPU16krdDBahqzIjii4LgrisYB/QKUMmk7ahSWZI7ohlKG78AT/CjQtF3PoV7vwB9/6B6WOhrQcuHM65N7n3hAlnGlz305qbX1hcWs6t5FfX1jc27a3tmo5TRWiVxDxWjRBrypmkVWDAaSNRFIuQ03rYOx/69RuqNIvlNfQT2hK4I1mbEQxGCuxdP+liCbHI+oPAB3oLSmTmhWgQ2AW35I7gzBJvQgrlveDh6+K7VgnsDz+KSSqoBMKx1k3PTaCVYQWMcDrI+6mmCSY93KFNQyUWVLey0QkD59AokdOOlSkJzkj9PZFhoXVfhKZTYOjqaW8o/uc1U2iftTImkxSoJOOP2il3IHaGeTgRU5QA7xuCiWJmV4d0scIETGp5E4I3ffIsqR2VvOPSyZVJo4jGyKF9dICKyEOnqIwuUQVVEUF36BE9oxfr3nqyXq23ceucNZnZQX9gvf8A9P2cEg==</latexit>

Figure 5.2 Apartments for sale and sold apartments in Sweetwater.

From this table, you might start to think intuitively. The price of the

114 m² apartment is probably closer to $1,000,000 than $100,000.

If you collect many more labeled examples, you can use a predictive

model to help you out.

You don’t need to code any model yourself to get started, as

open-source machine learning libraries are available for most pro-

gramming languages. Once a library is installed, its models can be

imported into your code and promptly put to use.

TRAiNiNG Before you can use a model to make predictions, you

have to make it learn. The specific syntax depends on the program-

ming language and on the library you are using, but it always comes

down to calling a training function that takes as arguments the

import ModelABC

model ← ModelABC.new()

model.train(X, y)

0.5 km

10.6 km

35 m2

3 yr

120 m2

9 yr

26 yr

2.1 km

91 m2

90 m2

8 yr

3.5 km $185,000

$840,000

$745,000

$540,000

X and y tables of

the labeled dataset.

As they describe the

same list of events,

these tables must

contain the same

number of rows. As

the model trains, it

adjusts its internal

cogs to find a math

formula that approximates the values of y from the rows ofX . Typ-

ically, X and y require a huge number of examples for the model

to make good approximations. Depending on the application, this

number could be in the thousands, millions, or billions.

184 | COMPUTER SCiENCE UNLEASHED

PREDiCTiNG Once the model is trained, we can start predicting. If

we now take the rows of X for which y is unknown, we can use a

predicting function to make the estimations ypred. This output is the

y_pred ← model.predict(X)

114 m2

68 m210 yr2.4 km

3.4 km

4 yr

16 yr

0.4 km

40 m2

$23,958

$348,296

$1,332,182

model’s best guess

for the values of y

that will be later

observed in real life.

The predictions in

this example are

probably very unre-

liable. In order to make better predictions, we need to train the

model with way more than four labeled examples. Furthermore,

this model only takes into account three features. Let’s see how

more data can be included in order to train more powerful models.

Figure 5.3 “Thanks to machine learning algorithms, the robot apoca‑

lypse was short‑lived.” Courtesy of http://smbc‑comics.com.

Learning | 185

5.1 Features

Data collection and processing must be performed carefully when

the data will be used for machine learning. Before we even start

worrying about training a model, we have to ensure we understand

how the data we will feed it must look like. Imagine, for example,

that you work for a hospital; and for logistical purposes, you want

to predict how long each incoming patient will stay. If you start

looking around for data, you will find hundreds of different tables

in different formats.

patient 58

37.0 °C

11:00 pm

10:00 pm 37.2 °C

37.0 °C

TTime

9:00 pm

18-Feb-2006

30-Jan-1957

28-Apr-1956

12-Oct-1997

04-Nov-1982

29-May-1999

Birthdate

61

Blood

62 M

Longitude

 36°53’27” N

36°53’36” N

NULL

F

27°17’05” E

58

Latitude

NULL

 36°53’22” N

27°17’23” E

 36°53’24” N

57

F

NULL

59 M

F 27°17’05” E

Sex

 26°59’21” E

27°17’20” E

 36°45’10” N

NULL

ID

60

May 29

NULL

May 30

June 1

June 5

May 29

Out

June 7

NULL

Pain

May 28

57

58

62

59

May 28

61

May 28

May 28

May 28

58

Patient

May 30

May 29

60

In

admissions

patients

4:00 am 38.5 °C

40.3 °C

39.1 °C

1:00 am 38.9 °C

38.1 °C

2:00 am

12:00 am

TTime

3:00 am

patient 62

Figure 5.4 Raw hospital data.

Machines aren’t intelligent yet, so we cannot simply throw data at

them and expect them to train themselves and start predicting. We

must digest the data into well structuredX and y tables that models

can work with. Let’s see how it’s done.

186 | COMPUTER SCiENCE UNLEASHED

Adapting Data

The first step in building X and y from our dataset is to check we

have the right kind of data. Most predictive algorithms work only

with NUMERiCAL DATA. Let’s see how to process other kinds of

data so they can also be included as features.

CATEGORiCAL DATA We say categorical data is encoded into

numerical form. The encoding method will depend on whether

your data is binary, ordinal or nominal. Let’s see what this means:

M

F

Sex Sex

0

1

Encoding binary data. It comes in two cat-

egories, therefore one category is expressed

as 0 and the other as 1. Here, the raw data

indicates the biological sex1 of a patient.

Pain

4

3

1

Pain

2

Encoding ordinal data. The categories are

ordered, so we assign them numbers accord-

ingly. For instance, if an emergency room

admission form asks patients to select one

of four emoji to describe their pain, it can

be expressed with a number from 1 to 4.

Blood

1

0

A

0

0

B

1

0

0

0 1

AB

0

0

0

0

O

1

0

0

Encoding nominal data. When

the categories of our column

have no intrinsic order, we typ-

ically encode the column into

several binary features: one

for each category. This tech-

nique is called one-hot encoding. This example shows how it is

used to express a patient’s blood group in four features. Since a

patient can only have one blood group, the encoded record must

have one cell containing 1, and all other cells containing 0s.

1Up to 2% of us are born intersex, for instance with XXY chromosomes. A

binary encoding may be used if predictions don’t directly affect individual patients,

for example if hospitalization times are estimated for internal logistical purposes.

Learning | 187

NULL

B

0

3

01 1

NULL

4

1

0

0

Sex

0

NULL

0 0

1

2

A

0 0

3 NULL

0

0

0

Pain

0

1

0

0

NULL

0

1

1

0 0

0

AB

NULL

0

1

1

O

0

0

2

NULL

F

59

61

58

Sex

62

F

ID

M

F57

Blood

NULL

60

M

ENCODE

X

57

58

62

59

NULL

61

58

Patient

60

Pain

admissionspatients

Figure 5.5 Getting features from different types of categorical data.

TEMPORAL DATA The most straightforward way to include date

or time records is to extract their numerical parts: a date can be

split into three separate features for year, month and day; and a

time can be split into hours, minutes and seconds.

However, this is rarely helpful for a predictive algorithm. For

instance, whether a patient is born in April or November should

not affect their recovery time. On the other hand, whether they are

twenty or sixty years old matters. Hence if you have the date of

birth and the admission date, you can construct a new feature by

calculating their age in years. If you are trying to predict how long

they will stay in the hospital, you do the same for y: the length of

stay is the number of days between admission and discharge.

64

Stay

20

10

7

NULL

1

1

4

Age

22

21

63

0

37

14

62

61

60

58

Patient

58

57

59

May 30May 30

May 29 June 5

May 29May 28

Out

May 29

June 1

June 7

NULL

May 28

May 28

In

May 28

May 28

CONSTRUCT

X

61

57

58

30-Jan-1957

04-Nov-1982

60

12-Oct-1997

59 28-Apr-1956

62

18-Feb-2006

ID

29-May-1999

Birthdate

2020 admissionspatients y

Figure 5.6 Getting features from temporal data.

One other way to construct a feature is to convert and encode tem-

poral data as categorical data. For example, if hospitalizations due

188 | COMPUTER SCiENCE UNLEASHED

to intoxication are more frequent at night or on weekends, this

could have an impact on y. You canmake this information available

May 30

May 28

Date

2:56 am

May 29

4:32 pm

11:05 pm

May 28

Time

8:40 pm

Wknd

0

1

Night

0

0

1

1

1

0

inX as binary data. A lot of hid-

den information can be brought

to light this way, such as the

availability of open drugstores,

the season of the year, or the

occurrence of a holiday. Create

features for the chronological and seasonal patterns that are likely

related to what you want to predict.

GEOGRAPHiCAL DATA Geographical data is often represented by

numbers in coordinates of latitude and longitude. On their own,

these numbers only indicate how far north and east a place is. The

numbers may be separated into different numerical features, but

just as for temporal data, these features generally don’t help much.

To construct meaningful features from geographical data, think

about how the locations you have relate to what youwant to predict.

It is often useful to calculate distances: if you want to predict the

prices of apartments, you can construct features for their distances

to the city center, to the nearest beach, or to the nearest school,

supermarket and hospital.

3.3

27.5

Distance

3.5

3.0

NULL

2.9

27°15’25” E 36°52’32” N

LongitudeLatitude

CONSTRUCT

X

 26°59’21” E

27°17’23” E

27°17’05” E

Longitude

NULL

27°17’20” E

27°17’05” E

61

57

58

 36°53’22” N

36°53’36” N

60

 36°53’27” N

59 36°45’10” N

62

NULL

ID

 36°53’24” N

Latitude

hospital

patients

Figure 5.7 By converting patient addresses to geographical coordi‑

nates, their distance to the hospital may be constructed.

Numerical coordinates can be transformed into categorical data as

well, such as the town, neighborhood, or zip code. Some of this

categorical data can even allow you to add more information as fea-

tures, such as matching indexes for income and criminality levels.

Learning | 189

UNSTRUCTURED DATA It is estimated around 80% of the world’s

digital data is unstructured, and thus cannot be encoded as rows

and columns but rather as individual files. Constructing features

from unstructured data is difficult. In order to obtain numeri-

cal data from unstructured data, we must find what quantifiable

aspects of it are relevant to our project.

Imagine, for example, that a set of patient records contain CT

scans of their lungs. A useful number that physicians could obtain

from the images is the area of the lungs of each patient.

The most common form of unstructured data is text. What

quantifiable aspect of a text file could we be interested in? The

total word count is a simple, popular one. Another prevalent fea-

ture is the occurrence of specific words. For instance, the fact that

a medical report contains the words “tumor” or “cancer” can be

encoded as binary categorical data. Or, if we take the number of

occurrences of a key word and divide it by the total word count, we

obtain the frequency at which it appears.2

Guessing which useful features could be hidden in unstructured

data is easier when you can consult experts who collect and analyze

it routinely. If you ask physicians what exactly they look for when

they inspect medical reports or CT scans, they might give you inter-

esting ideas to build relevant features.

Combining Data

Your raw data will often come in different shapes and sizes, and

sometimes features can’t be encoded without prior processing. Fur-

thermore, some data points don’t have much meaning on their own,

but we can combine them with others. Let’s see how to do this.

AGGREGATES If we have some information that comes as a collection

of numbers for each record in X or y, we often can’t encode every

number as a feature. For example, if we’re monitoring patient body

temperatures several times per day, our dataset will contain many

values for each patient’s temperature. The summarizing tools from

last chapter (sec. 4.3) can help transform this data into features:

2The Bag-of-Words is the most used method to create features from word

frequencies. See http://code.energy/bag-of-words for more.

X

4:00 am 38.5 °C

40.3 °C

39.1 °C

1:00 am 38.9 °C

38.1 °C

2:00 am

12:00 am

TTime

3:00 am

patient 62

37.0 °C

11:00 pm

10:00 pm 37.2 °C

37.0 °C

TTime

9:00 pm

patient 58
37.0

T
mean

T
min

38.98

T
max

37.2

38.1

37.07

40.3AGGREGATE

Figure 5.8 Constructing features by aggregating data.

When attempting to predict future performance, aggregations are

commonly used on historical data—past performance is often a

good indicator of future performance. For example, if you are pre-

dicting whether a team will win the NFL, construct features from

the five-number summary of the team’s score over the past years.

SCORES We can express an attribute of interest in a single number,

even when the information related to the attribute comes from dif-

ferent variables. A score is a number generated by a math formula

to represent a specific attribute. For example, the body-mass index is

often used in health care, and is calculated from a patient’s height

in meters and weight in kilograms:

19.8

28.1

NULL

23.6

30.1

22.3

BMI

30.5

SCORE

X

59

58

61

57

62

Patient

60

58

56 kg

1.65 m

83 kg

Heigth

69 kg

73 kg

90 kg

Weight

2.01 m

1.59 m

1.76 m

71 kg

82 kg

NULL

1.68 m

1.65 m

admissions

Figure 5.9 The BMI calculated from patient height and weight.

Well-designed scores encapsulate the knowledge of how multiple

factors interact and contribute to a meaningful attribute. Calculat-

ing a score and adding it to X makes that knowledge accessible to

the model. For instance, if you’re trying to predict if people will

develop diabetes and you have people’s height and weight, include

the BMI score as a feature. Obesity is a risk factor for diabetes, and

its best obtainable measure is often the BMI.

Learning | 191

In social sciences, the human development index (HDI) scores a

country’s development from its literacy rate, mean life expectancy,

and gross domestic product (GDP) per capita. In finance, the FICO

credit score describes a person’s creditworthiness, given their net

debt and payment history.

When there is no well-established score for a given metric, you

can create your own. Suppose you’re trying to predict the future

sales price of apartments, and you believe the perceived safety of

the building is a good indicator. You can construct your own “safety

score” that combines many factors: the number of crimes registered

in the neighborhood, the building’s distance to a police station, and

whether it has a doorman or a video-surveillance system.

After creating new features, revisit some of the data exploration

techniques from Chapter 4. Build summaries and plots for the new

features. This helps you check if the features were crafted correctly.

Also, a feature’s correlation coefficient with y can sometimes pro-

vide a preview of its predictive power.

Missing Values

Typically, the requirement for data to be numerical in X is strict:

most predictive algorithms can’t even handle NULL cells. When the

value of a feature is unavailable for some records, we must get rid

of those empty cells. There are several ways to do it.

DROPPiNG The simplest method is to remove from X all the rows

that contain one or more NULL cells:

B

0

3

01 1

4

1

0

0

Sex

0

0 0

2

A

0

0

0

Pain

0

1

0

0

0

1

1

0

AB

0

1

1

O

0

0

2

DROP

X

NULL

B

0

3

01 1

NULL

4

1

0

0

Sex

0

NULL

0 0

1

2

A

0 0

3 NULL

0

0

0

Pain

0

1

0

0

NULL

0

1

1

0 0

0

AB

NULL

0

1

1

O

0

0

2

X

Figure 5.10 Dropping incomplete rows fromX .

192 | COMPUTER SCiENCE UNLEASHED

Dropping is a good approach when few rows are affected. However,

decreasing the amount of X data for training generally decreases

the performance of a predictive model, and deleting too many rows

will limit its predictive power. Moreover, dropping rows doesn’t

only mean you have less data for training: it also means that you

will drop the opportunity to make predictions for any important

event with missing data.

Sometimes, we have a column where most of the values are

missing. In such cases, dropping that feature from X is often a

better option as it allows you to save many rows.

There is another way you can deal with missing data: filling

NULL cells with a value you deem reasonable. This process is called

imputation, and the three most commonly used fillers are the most

frequent, the average, and the new label.

MOST FREQUENT If many values are repeated in a column, the most

frequent such value is used in all NULL cells in that column. This is

especially useful to resolve missing values in categorical data.

XX

IMPUTE

NULL

B

0

3

01 1

NULL

4

1

0

0

Sex

0

NULL

0 0

1

2

A

0 0

3 NULL

0

0

0

Pain

0

1

0

0

NULL

0

1

1

0 0

0

AB

NULL

0

1

1

O

0

0

2

?

B

0

3

01 1

?

4

1

0

0

Sex

0

?

0 0

1

2

A

0 0

3 ?

0

0

0

Pain

0

1

0

0

3

0

1

1

0 0

0

AB

0

0

1

1

O

0

0

2

Figure 5.11 Imputations for binary and ordinal encodings such as

biological sex and pain may be resolved directly in X . However, the

one‑hot encoding for blood type cannot be resolved this way since all

of its columns contain mostly zeros.

Learning | 193

0

B

0

3

01 1

1

4

1

0

0

Sex

0

0

0 0

1

2

A

0 0

3 0

0

0

0

Pain

0

1

0

0

3

0

1

1

0 0

0

AB

0

0

1

1

O

0

0

2

59

61

58

62

ID

57

Blood

NULL

60

Xpatients

IMPUTE
59

61

58

62

ID

57

Blood

60

patients

Figure 5.12 Nominal data must be imputed before one‑hot encoding.

This way, one of the imputed cells will be a 1.

Notice that this operation must be performed before the one-hot

encoding to ensure that each one-hot encoded row contains a cell

displaying 1. This is how we avoided filling the question marks in

fig. 5.11 entirely with zeros.

AVERAGiNG Following this method, the NULL cells are filled with

the average value of other cells in the column:

XX

IMPUTE19.8

28.1

NULL

23.6

30.1

22.3

BMI

30.5

19.8

28.1

25.7

23.6

30.1

22.3

BMI

30.5

Figure 5.13 Imputing cells with the column’s mean.

Typically, the mean or the median is used. Be careful with this

strategy: it won’t work with categorical features. For instance, if

you try it with binary data, the empty cells could be filled with

decimal values instead of ones and zeros.

194 | COMPUTER SCiENCE UNLEASHED

NEW LABEL This strategy only works for categorical variables.

When NULL cells are frequent in a categorical column, we can

create a new label, and assign it to all cells with missing values.

Test to treat Your hospital is strugglingwith a novel

coronavirus pandemic, and you must estimate how likely

incoming patients are of needing a respirator. You test

the patients for the virus and create a categorical feature

where each is labeled ‘negative’ or ‘positive’. There aren’t

enough tests for everyone, so priority is given to patients

who display symptoms such as fever and coughing. In the

end, only half the patients have been tested, 60% of whom

turn out positive. How should you impute the NULL cells

of untested patients?

Dropping the rows for untested patients is not an option, as it would

cut out half of the records and render the model useless to predict,

for example, the total number of respirators needed in the future.

Using the most frequent value is problematic: most tests turned out

positive, but tests were not administered at random, so the results

don’t necessarily generalize well to asymptomatic patients. This is

a form of selection bias (sec. 4.1): patients without symptoms are

less likely to have the virus than those with symptoms, so defaulting

them to ‘positive’ would be a mistake!

Therefore, you have two options: ask the hospital to test a small

sample of asymptomatic patients and generalize that result, or sim-

ply create a new label for untested patients. The former will allow

you to keep a binary encoding for the feature, whereas the latter

will require a one-hot encoding for the three final labels (‘negative’,

‘positive’, and ‘untested’).

Dropping records, selecting the most frequent values, calculat-

ing averages, and creating new labels are the simplest and most

common methods of dealing with missing values. Scientists are

actively researching new and more effective ways of imputing large

datasets. In general, imputation is effective if missing data appears

at random. If there’s an underlying reason for some cells to be NULL,

these strategies can hinder more than they help.

Learning | 195

Data Leakage

When we’re building X and y from past events, we might acciden-

tally include in X information that only exists once y is observed.

This is called data leakage. If this happens, the model will be

trained to predict the future from future data, which is pointless.

As you add features into X , think about the information that

will be available when you make predictions. InspectX and ensure

it looks exactly like the data your model will have to evaluate ypred.

Let’s try this in practice:

Busy beds You are in charge of a hospital’s business

intelligence system. The day following the admission of

each patient, you are asked to predict how long they will

stay hospitalized. You are given access to the following

information about past patients: age, sex, BMI, blood type,

vital signs, and total cost of stay. How can you choose

which data to include as columns of your dataset?

The first step is to check when and how this information was col-

lected. For example, let’s assume age () and sex () are collected

during admission, and blood type () shortly thereafter. However,

height () and weight (), to obtain the BMI, typically come after

a couple of days. Measurements of vital signs such as heart rate

(), blood pressure (), and body temperature () are made

all along the patient’s stay. Finally, cost of stay () can only be

calculated after the patient is discharged:

dischargeadmission

Figure 5.14 Time line of observations for a typical patient.

196 | COMPUTER SCiENCE UNLEASHED

The length of stay y is observed at discharge. We can already see

that including in the feature tableX of labeled examples would

be pointless, as it would amount to predicting the past! To deter-

mine precisely what data cannot influenceX , let’s add on the time

line the moment y is observed, and when we would want the model

to estimate ypred.

observationprediction

ypred

<latexit sha1_base64="x9DnRJx0MiUzzGzAUrvMmRCc7VA=">AAAB+HicbVDLSsNAFJ3UV62PRt3pZrAIXZVEFF0WBHFZwT6gDWEymbRDJw9mbsQY+hGu3bhQxK2f4s4fcO8fOH0stPXAwOGce7h3jpcIrsCyPo3C0vLK6lpxvbSxubVdNnd2WypOJWVNGotYdjyimOARawIHwTqJZCT0BGt7w4ux375lUvE4uoEsYU5I+hEPOCWgJdcsZ24P2B3IMNc5f+SaFatmTYAXiT0jlfq++/B1+d1quOZHz49pGrIIqCBKdW0rAScnEjgVbFTqpYolhA5Jn3U1jUjIlJNPDh/hI634OIilfhHgifo7kZNQqSz09GRIYKDmvbH4n9dNITh3ch4lKbCIThcFqcAQ43EL2OeSURCZJoRKrm/FdEAkoaC7KukS7PkvL5LWcc0+qZ1e6zaqaIoiOkCHqIpsdIbq6Ao1UBNRlKJH9IxejHvjyXg13qajBWOW2UN/YLz/AKx2l2M=</latexit>

y

<latexit sha1_base64="UxxznrobCBlTbTfqi/Mj/IqVL3Y=">AAAB6HicbVA9SwNBEJ1L/IjxK2ppcxgCqcKdKFoGbCwTMB+QBNnbzCVr9vaO3T3hOIKNnY2FIin1R/hD7Pw3bj4KTXww8Hhvhpl5XsSZ0o7zbWWya+sbm7mt/PbO7t5+4eCwqcJYUmzQkIey7RGFnAlsaKY5tiOJJPA4trzR1dRv3aNULBQ3OomwF5CBYD6jRBupntwWik7FmcFeJe6CFKvZ0sPn5PG9dlv46vZDGgcoNOVEqY7rRLqXEqkZ5TjOd2OFEaEjMsCOoYIEqHrp7NCxXTJK3/ZDaUpoe6b+nkhJoFQSeKYzIHqolr2p+J/XibV/2UuZiGKNgs4X+TG3dWhPv7b7TCLVPDGEUMnMrTYdEkmoNtnkTQju8surpHlacc8q53WTRhnmyMExnEAZXLiAKlxDDRpAAeEJXuDVurOerTdrMm/NWIuZI/gD6+MHYiSQQg==</latexit>

Figure 5.15 The observations in gray should never influenceX .

Any values measured or observed after the moment ypred is evalu-

ated shouldn’t be included inX , even during the training phase. In

our example, the BMI should not be included in the features since

it depends on , which is typically measured after the prediction is

made. The vital signs can be included in X if they only aggregate

the values measured on the first day.

As long as you can ensure no data is leaking, extract as many

features as you can. This improves the chances that your model will

find good patterns to make reliable predictions. Let’s now see how

to choose a model and evaluate how accurate those predictions are.

5.2 Evaluation

After building X and y, the next step is to choose a model to train.

The first thing you’ll notice is that models are either regressors or

classifiers. Regressors predict quantities, while classifiers predict

labels. To predict people’s nationality, you’ll use a classifier. But to

predict people’s age, it’s better to use a regressor.

Learning | 197

Pick one of your library’s models and get started. Don’t worry

about which specific model to choose—you can pick any. At this

point, simply ensure you’re picking a regressor if your y is numerical

data—or a classifier if it’s categorical data.

Most models use a technique called supervised learning. The

trick is for themodel tomake a series of guesses on its training exam-

ples. Each time, the model will use its internal predict function

and then evaluate how well it predicts by comparing the output

ypred with the true y. Using this evaluation and some math tricks, it

will try to improve itself and guess again. Once the predictions stop

improving, the model will stop training. The following flowchart

summarizes the process:

X
Model starts

Tries to

improve itself

Evaluates

itself

Is model

improving

?

Model stops

yes

no

y

Makes predictions

y_pred ← model.predict(X)

LABELED

DATASET

Figure 5.16 Supervised learning in action.

Now we have a trained model that we can use to predict the future.

Sweet. But how well can the model predict? How can it be evalu-

ated? There are several different evaluation metrics, which either

work for regressors or for classifiers. Let’s start with the former.

198 | COMPUTER SCiENCE UNLEASHED

Evaluating Regressors

Since regressors predict quantities, a natural way to evaluate how

close a given prediction ypred is from the true y is to calculate the

error between the two:

error = ypred − y.

This gives one error value per row of X and y. Typically, we sum-

marize all those errors using a type of average. Here are some com-

mon ways to do it:

MEANABSOLUTE ERROR (MAE) The mean is the most commonly used

average. However, when calculating a mean, positive and negative

errors cancel each other out and give us a false sense of precision.

In order to avoid this, the MAE is the mean of all absolute errors,

i.e. the mean of all errors ignoring their negative signs. For instance,

let’s suppose we’re training a model to predict apartment prices in

thousands of dollars, based on the labeled examples from fig. 5.2:

650

179

662

835

Pred. Price

y y pred

<latexit sha1_base64="YBHyPoWM+kDR4O0yhU4CIbAYgJQ=">AAACAnicbVDLSgMxFM34rPU16krdDBahqzIjii4LgrisYB/QKUMmk7ahSWZI7ohlKG78AT/CjQtF3PoV7vwB9/6B6WOhrQcuHM65N7n3hAlnGlz305qbX1hcWs6t5FfX1jc27a3tmo5TRWiVxDxWjRBrypmkVWDAaSNRFIuQ03rYOx/69RuqNIvlNfQT2hK4I1mbEQxGCuxdP+liCbHI+oPAB3oLSmTmhWgQ2AW35I7gzBJvQgrlveDh6+K7VgnsDz+KSSqoBMKx1k3PTaCVYQWMcDrI+6mmCSY93KFNQyUWVLey0QkD59AokdOOlSkJzkj9PZFhoXVfhKZTYOjqaW8o/uc1U2iftTImkxSoJOOP2il3IHaGeTgRU5QA7xuCiWJmV4d0scIETGp5E4I3ffIsqR2VvOPSyZVJo4jGyKF9dICKyEOnqIwuUQVVEUF36BE9oxfr3nqyXq23ceucNZnZQX9gvf8A9P2cEg==</latexit>

122

-6

90

Error

-190

122

6

90

Abs. Error

190840

745

185

540

True Price

MAE =
190 + 122 + 90 + 6

4
= 102.

Figure 5.17 Calculating the MAE of four predictions.

Following this method, the average error is of $102,000. If we had

calculated the mean of errors instead of absolute errors, we would

have obtained a misleading average of $4,000! Always ensure you

sum positive values when calculating the MAE.

Learning | 199

ROOT MEAN SQUARE ERROR (RMSE) In some cases, a single wildly

inaccurate prediction may result in catastrophe. If we’re sensitive

to extreme errors, we can make our evaluation penalize them more

by calculating the mean of the squared errors:

650

179

662

835

Pred. Price

y y pred

<latexit sha1_base64="YBHyPoWM+kDR4O0yhU4CIbAYgJQ=">AAACAnicbVDLSgMxFM34rPU16krdDBahqzIjii4LgrisYB/QKUMmk7ahSWZI7ohlKG78AT/CjQtF3PoV7vwB9/6B6WOhrQcuHM65N7n3hAlnGlz305qbX1hcWs6t5FfX1jc27a3tmo5TRWiVxDxWjRBrypmkVWDAaSNRFIuQ03rYOx/69RuqNIvlNfQT2hK4I1mbEQxGCuxdP+liCbHI+oPAB3oLSmTmhWgQ2AW35I7gzBJvQgrlveDh6+K7VgnsDz+KSSqoBMKx1k3PTaCVYQWMcDrI+6mmCSY93KFNQyUWVLey0QkD59AokdOOlSkJzkj9PZFhoXVfhKZTYOjqaW8o/uc1U2iftTImkxSoJOOP2il3IHaGeTgRU5QA7xuCiWJmV4d0scIETGp5E4I3ffIsqR2VvOPSyZVJo4jGyKF9dICKyEOnqIwuUQVVEUF36BE9oxfr3nqyXq23ceucNZnZQX9gvf8A9P2cEg==</latexit>

122

-6

90

Error

-190

14,884

36

8,100

(Error)2

36,100840

745

185

540

True Price

RMSE =

√

36100 + 14884 + 8100 + 36

4
≈ 122.

Figure 5.18 Calculating the RMSE of four predictions.

This time, the predictions yield an average error of about $121,600.

Here, there is no problem with negative numbers, since the square

of a negative number is always positive. Furthermore, the RMSE

is the square root of the mean, which brings the value back to the

original scale of the errors.

Let’s see how the choice between MAE and RMSE affects train-

ing. Imagine that the model tried to improve itself, and now yields

the following predictions:

748

281

650

887

Pred. Price

y y pred

<latexit sha1_base64="YBHyPoWM+kDR4O0yhU4CIbAYgJQ=">AAACAnicbVDLSgMxFM34rPU16krdDBahqzIjii4LgrisYB/QKUMmk7ahSWZI7ohlKG78AT/CjQtF3PoV7vwB9/6B6WOhrQcuHM65N7n3hAlnGlz305qbX1hcWs6t5FfX1jc27a3tmo5TRWiVxDxWjRBrypmkVWDAaSNRFIuQ03rYOx/69RuqNIvlNfQT2hK4I1mbEQxGCuxdP+liCbHI+oPAB3oLSmTmhWgQ2AW35I7gzBJvQgrlveDh6+K7VgnsDz+KSSqoBMKx1k3PTaCVYQWMcDrI+6mmCSY93KFNQyUWVLey0QkD59AokdOOlSkJzkj9PZFhoXVfhKZTYOjqaW8o/uc1U2iftTImkxSoJOOP2il3IHaGeTgRU5QA7xuCiWJmV4d0scIETGp5E4I3ffIsqR2VvOPSyZVJo4jGyKF9dICKyEOnqIwuUQVVEUF36BE9oxfr3nqyXq23ceucNZnZQX9gvf8A9P2cEg==</latexit>

110

96

142

Error

-92

12,100

8,464

9,216

(Error)2

20,164

110

96

142

Abs. Error

92840

745

185

540

True Price

MAE = 110, RMSE ≈ 112.

Figure 5.19 Evaluating new predictions using MAE and RMSE.

The MAE increased from $102,000 to $110,000, whereas the RMSE

decreased from about $122,000 to about $112,000. This shows that

the question “Is the model improving?” from one training iteration

200 | COMPUTER SCiENCE UNLEASHED

to the next (fig. 5.16) can be answered differently depending on

which evaluation method is used.

Be careful not to compare model errors when they are predict-

ing outputs of different scales. For example, if the same model

were trained to predict themonthly rent of the same apartments, the

MAE and RMSE would likely be around $500. These smaller scores

would not indicate that the model got any better: they would sim-

ply translate the fact that the entire y column of labels was about

200 times smaller.

The MAE and RMSE can give some insight into a model’s ability

to predict the future. The better the model generalizes to new data,

the closer these scores will be from the errors of future predictions.

WHATABOUTCLASSiFiERS? If your model is a classifier, it will output

labels as it predicts, not numbers—meaning the scoring techniques

we’ve seen cannot be used on it. Scoring a classifier can be much

more complicated than scoring a regressor. To avoid distracting

you from the main topic of how a prediction system is built, we

placed our comprehensive explanation of how to score classifiers

into Appendix IV. Make sure to check it out later!

5.3 Validation

Sometimes, a model is trained in a way that makes it too attached to

the specific events it learned from. When that happens, the model

approximates y values for records in the labeled dataset far better

than for records it has never seen. This is called overfitting.

When we evaluate an overfitted model for the events it learned

from, the resulting score is misleading. Since this is always a risk,

we validate the model: we evaluate its predictions for events not

used in training. This is the only way to ensure the model’s score

isn’t deceptively good because of overfitting. The score then better

reflects the model’s true performance: the one we can expect from

it when making actual predictions out in the real world.

In order to be able to validate a model, we must set aside some

labeled examples before we start training. To that end, we split the

rows of X and y into a training set and a validation set.

Learning | 201

The model is trained using data from the training set, and scored

by how it predicts the events in the validation set.

X
Model starts

Tries to

improve itself

Evaluates

itself

Is model

improving

?
yes

y

Makes predictions

y_pred ← model.predict(X_tr)

TRAINING

SET

Makes predictions

y_pred ← model.predict(X_v)

Evaluates

itself

X y
VALIDATION

SET

Model stops

no

Figure 5.20 The validation set is kept aside for a final, independent

evaluation of the model.

Note that rows of the labeled dataset must be split at random. Split-

ting the dataset without shuffling its rows often adds selection bias

to the process.

No strict rule dictates how large each set should be. Typically,

10% to 20% of the data is reserved for validation. The bigger the

training set, the better the model can learn to perform; the bigger

the validation set, the more confident we are that the final score

reflects themodel’s true performance. Still, unless the validation set

202 | COMPUTER SCiENCE UNLEASHED

is extremely large with hundreds of thousands of records, data sci-

entists hardly ever rely solely on the single score obtained through

this simple dataset split.

Unfortunately, the records we choose to include in the training

or validation sets influence our final score. Often, different selec-

tions of the labeled dataset aren’t equally as difficult for the model

to learn from. If you evaluate themodel only once, there’s a risk you

shuffled the rows into an atypical training or testing set—resulting

in a score that doesn’t reflect the model’s true performance.

Cross-validation mitigates this risk by repeating the entire pro-

cess several times. Each time, the labeled dataset is split into dif-

ferent training and validation sets. This yields many scores, which

collectively describe the model’s performance. Let’s learn the three

most common ways to perform cross-validation.

K‑Folds

Instead of splitting the shuffled dataset in two—as we had done

when we created a pair of training and validation sets—let’s split it

into ten different groups, or folds, of (almost) equal size:

Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold

1 2 3 4 5 6 7 8 9 10

LABELED

DATASET

Figure 5.21 Shuffling 365 records into folds of 36 or 37 each.

Using these folds, we can construct a training set by joining the

records in the first nine folds, while reserving the last for validation:

Figure 5.22 Folds 1‑9 are the training set, fold 10 is the validation set.

Learning | 203

By reserving a different fold for validation, we can construct ten dif-

ferent training and validation sets. This lets us evaluate our model

ten different times, yielding ten different scores:

Figure 5.23 Ten different training and validation sets.

This technique is called k-fold, as any number of folds could have

been used. With more folds, you evaluate your model more times,

and the number of records in the training sets increases. However,

more folds also require more computations. Also, the training sets

become more similar to each other, which negates some of the

advantages of evaluating the model multiple times. It’s generally

best to stick to the default configuration most scientists use: either

five or ten folds.

204 | COMPUTER SCiENCE UNLEASHED

Monte Carlo

With k-folds, each record gets to be in the validation set just once.

This means that each record is used for model validation a single

time. This can be a problem: if the model had been trained with

a different selection of training data, it would likely predict some

events differently. This is never explored using k-folds.

In contrast, the Monte Carlo method allows a single record

to be in many validation sets for a more thorough validation of the

model. Instead of using a fixed set of folds, it entirely re-shuffles the

labeled dataset before each split. This way, it selects many random

training and validation sets, then trains and scores the model for

each random selection.

Monte Carlo is used when there is an abundance of computing

power, and the model can be trained and scored repeatedly at little

cost. If we wished to train with 90% of our 365 records and validate

with the remaining 10%, Monte Carlo could evaluate the model a

virtually unlimited number of times3 with different random training

and validation sets. After a fewmillion evaluations, we can be more

certain that the different scores collectively reflect the model’s true

performance.

Leave‑One‑Out

Sometimes, we have to work with a very small labeled dataset of

only a few dozen records. In such cases, it makes sense to keep the

training set as large as possible. To this end, we train the model on

all records but one, and evaluate on this remaining record.

This strategy is called leave-one-out. It can be seen as a special

case of the k-fold: there are as many folds as the total record count,

so each fold contains only one record.

But there’s a catch: all training instances are extremely simi-

lar to each other. Even though the model will be evaluated many

times, the different evaluations are going to be very similar, nulli-

fying some of the advantages of performing multiple evaluations.

3In theory, there are trillions of trillions of trillions of trillions of different

possible validation sets that use 10% of our 365 records. Our first book, Computer

Science Distilled, explains how to count such combinations.

Learning | 205

Only use leave-one-out as a last resort when you cannot increase

the size of your tiny dataset.

Interpretation

Cross-validation leaves you with many scores that collectively

describe your model’s performance. We typically summarize these

values to better interpret them, for example with their five-number

summary. The interpretation can depend on what you need your

model to do.

If, for example, you don’t mind bad performance as long as

the model sometimes performs extremely well, focus on the upper

quartile and maximum score. If, on the other hand, you cannot

afford rare cases of poor model performance, take the pessimistic

approach and focus on the lower quartile and minimum.

In general, the mean is taken as the most relevant summary of

how the model is doing. But the mean is only a rough representa-

tion of the model’s performance. It’s good practice to consider it

along with the standard deviation: the degree to which the model’s

performance typically differs from the mean.

Besides providing a measure for expected model performance,

cross-validation scores also allow us to compare different models.

There are many types of models with different internal mechanisms.

To compare two models and decide which is best, don’t look at

the means. Perform a hypothesis test on the cross-validated scores

from both models to check whether there’s statistical significance

in stating that one model has a higher mean score than the other.

Oftentimes, a computationally heavy model will have a slightly

higher mean score than a simpler model. Yet, a hypothesis test

will tell us that the difference isn’t statistically significant. In these

cases, choose the simpler model.

5.4 Fine‑Tuning

We learned to prepare data, train a generic machine learningmodel,

and measure its performance. If you stop there and don’t make

adjustments to your system, you will only achieve a fraction of the

predictive power within your reach.

206 | COMPUTER SCiENCE UNLEASHED

A prediction system can be tweaked in many different ways.

For example, adjusting your features can dramatically improve pre-

diction performance. Selecting the most appropriate type of model

and adjusting its specific parameters for your task also helps.

Data scientists start by training and cross-validating a simple

prediction model. They then make small incremental changes to

their system, carrying out a new cross-validation every time. Scores

before and after each change are compared, and changes that bring

statistically significant improvements are kept. This process contin-

ues until no improvements to the system can be found.

Figure 5.24 “Machine Learning”, courtesy of http://xkcd.com.

Let’s start with the adjustments that can be made to the features.

Features are most effective when they provide clear hints to the

model. Your columns ofX must be a collection of clues that relate

to what you’re predicting as directly as possible. Sometimes, trans-

forming the values in X can help achieve this.

The process of transforming features to make them work better

with a model is called feature engineering. Out of all adjustments

that can be made to a prediction system, this one often holds the

Learning | 207

biggest potential for improvement. Let’s see some of the most com-

mon feature engineering techniques.

Imputation

In Section 5.1, we saidX can’t contain NULL cells, andwe discussed

strategies to handle them: dropping rows with missing data, drop-

ping columns with missing data, filling blank cells with a column’s

average, or with a default value. To discover which strategies best

fit your prediction task and data, try them out and evaluate their

performance!

For instance, if you’re filling cells with a column’s median, also

try the mean, and try a constant default value. For each column

that has more than 1% of NULL cells, testing the effects of a few

different imputation strategies is generally worth it. If no strategy

is significantly better than the others, stick with the simplest: fill

all blank cells with a constant default value.

Outliers

The presence of outliers inX can confuse somemodels. As with the

imputation of missing values, there are various ways to deal with

outliers. For example, if a column only has a handful of outliers, it’s

often best to drop their rows from X . If outliers are frequent (for

example more than 1% of the rows), you can try to replace them

with less extreme values. This technique is known as clipping.

CLIP

Figure 5.25 Clipping three outliers.

Normalization

Some models are confused by features that display widely different

ranges. A feature whose values range from zero to a few thousands

might receive a biased weight if the other columns range from zero

208 | COMPUTER SCiENCE UNLEASHED

to a few dozens. To prevent this issue, columns can be rescaled such

that they all display a similar range. This is called normalization.

The simplest normalization technique is called MinMax. The min-

imum value in the column becomes zero, the maximum becomes

one. All other values are placed in between:

0.20

0.00

0.53

1.00

1.00

0.83

0.91

0.84

0.00 0.72

0.49

0.43

xnew =
x−min

max−min
<latexit sha1_base64="AtwyO80NuGzwEmTCRVaMS/BoT/M=">AAACjHicjVHbattAEF2pzc3NxWnf0pclTqAvNZKTYIcSSJtS8pBCAnESsIVZrUfJktVK7I5amUW/0P/rF/QH+gFdy35oLoUO7HI4c+bCmTiXwmAQ/PT8Fy8XFpeWVxqvVtfWN5qbr69MVmgOfZ7JTN/EzIAUCvooUMJNroGlsYTr+P5kmr/+BtqITF3iJIcoZbdKJIIzdNSo+aMc2SFCiVbB96qiR3SYaMZtSd/TGV//9aDB6eXXs8h2PndOPh5UNhWqqir7D1UvCA/DrlOx0rX9z2aNUbMVtIM66FMQzkGLzON81Pw1HGe8SEEhl8yYQRjkGFmmUXAJVWNYGMgZv2e3MHBQsRRMZOsNKrrrmDFNMu2eQlqzf1dYlhozSWOnTBnemce5KflcblBg0ousUHmBoPhsUFJIihmdHoGOhQaOcuIA41q4XSm/Y853dKd6MKWcrdqYOhM+9uEpuOq0w71252K/dfxp7tEyeUu2yTsSki45JqfknPQJJ7+9La/l7fjr/r7/wT+aSX1vXvOGPAj/yx8yDcg4</latexit>

90

2 5,522

72

34 8,431

7,840

−20

27 1,388

9,138

6,983

MINMAX

Figure 5.26 MinMax squeezes all values to the 0–1 range.

You can also normalize values according to their individual distance

to the mean and the column’s standard deviation: a value equal to

the mean becomes zero; a value equal to the standard deviation

becomes one. This normalization method is called the z-score:

1.00

0.730.00

−0.20

0.50

−1.43

1.00

−2.00

0.17

−0.85

−0.19

1.48

72

27

6,983

5,522

−20

7,840

34

2

9,138

8,431

90

1,388

xnew =
x−mean

std. dev.
<latexit sha1_base64="sFksBhfXXv38xc8GuoAf7DuE7NI=">AAACOHicbVDLSsNAFJ34tr6qLt0MFsGNIVFBEQTRjcsKVoW2lMnkRgcnkzBzU1tC/sXv8APc6tadu+LWL3DaZuHrwMDhnHO5d06QSmHQ896cicmp6ZnZufnKwuLS8kp1de3KJJnm0OCJTPRNwAxIoaCBAiXcpBpYHEi4Du7Phv51F7QRibrEfgrtmN0qEQnO0Eqd6lGvk7cQepgreCgKekxbkWY879EdOtZjYKooypDB0KUhdN2iqHSqNc/1RqB/iV+SGilR71QHrTDhWQwKuWTGNH0vxXbONAouoai0MgMp4/fsFpqWKhaDaeejPxZ0yyohjRJtn0I6Ur9P5Cw2ph8HNhkzvDO/vaH4n9fMMDps50KlGYLi40VRJikmdFgYDYUGjrJvCeNa2Fspv2O2I7S1/tjSG59aGTbj/+7hL7nadf09d/div3ZyWnY0RzbIJtkmPjkgJ+Sc1EmDcPJInskLeXWenHdn4HyMoxNOObNOfsD5/ALrfa3o</latexit>

Z-SCORE

Figure 5.27 With z‑score normalization, ranges aren’t fixed.

When using MinMax, all columns have the exact same range. More-

over, the presence of outliers will force non-outliers to be squeezed

closer to each other into smaller regions within the 0–1 range.

Using z-scores, outliers have less influence since they don’t cause

this squeezing, and the ranges of non-outliers are more similar

between columns. To find out which normalization method to use,

try both and compare cross-validation results.

Learning | 209

Log Transformation

In Section 4.4, we plotted the decreasing costs of computer storage

over the past decades and discovered that data spanning several

orders of magnitude can need special handling. The same is true

for feeding this type of data to predictive models. Features with

huge variance often weaken predictive performance.

If yourX table has such columns, try transforming their values

using a logarithmic function (log). If there are values between zero

and one in the column, add one before calculating the logarithm in

order to avoid large negative outputs.

If the column also includes negative numbers, the transforma-

tion gets trickier, as logarithms aren’t defined for such numbers.

One way to get around this is to remove the minus sign, add one,

apply the logarithm, and reapply the minus sign:

xlog =

{

log (x+ 1) if x ≥ 0,

−1× log ((−1× x) + 1) otherwise.

In addition, you may normalize a column right after performing a

logarithmic transformation to it. Here’s an example:

0.21

−0.41

31,390.12

−2,347.07

128.00

2.59

-3.37

0.08

4.50

2.11

−0.15

0.55

0.70

1.00

0.41

0.44

0.00

0.50

0.00

0.07

1.00

0.07

0.07

0.07 MINMAX LOG MINMAX

Figure 5.28 MinMax with and without prior log transformation.

Directly normalizing data with extreme variance leads to a lot of

values being very close to each other. By performing a logarith-

mic transformation before the normalization, numbers are better

spread across the range, and differences between values are easier

for the model to perceive.

210 | COMPUTER SCiENCE UNLEASHED

Binning

Making a feature carry less information sometimes helps the model.

Suppose your hospital is trying to predict the duration of stay of

incoming patients, and that you have a column for their age. As you

investigate, you notice that small age differences have little effect

on the duration of hospitalizations, yet there is a significant differ-

ence between children and adults. In this case, try to help themodel

differentiate these groups. For example, you can transform age into

a categorical feature with the labels “child”, “teen” and “adult”.

This technique is called binning. It consists of organizing the

original data into “bins” which are more relevant than the original

values. It can also be helpful when you have categorical features

where some labels rarely appear—study them and bin the related

ones together.

For instance, a categorical feature indicating a patient’s disease

may have thousands of labels. Binning them in groups of related dis-

eases can help the model make sense of the data. If you don’t have

time to create elaborate bins, try simply replacing all low-frequency

labels with a single “others” label. That alone can potentially help

your model a lot.

Clustering

In hospitals, incoming patients are often assigned to a group accord-

ing to their symptoms or illness. This helps doctors and nurses:

they can check which group a patient belongs to and obtain instant,

valuable information about the patient.

If you are a restaurant’s manager, it can also be useful to divide

customers into groups. There are the junkie diners, the healthy

food lovers, the penny-pinchers, etc. Knowing these groups allows

you to target different promotions to the customers who are most

likely to respond. Also, the restaurant may adapt its offerings to its

most profitable customers.

Be careful: you must group elements judiciously for it to help

your model. Most datasets will contain sets of rows with similar

characteristics. If you manage to group records according to these

similarities, add a column toX indicating which group each record

Learning | 211

is a part of. This new categorical feature will often enhance the

performance of a predictive model.

The process of finding similar characteristics and assigning each

record to a group is called clustering. There are algorithms that can

automate clustering. The most widely used clustering algorithm is

called k-means. Install a library that has this algorithm, and run

it on your dataset. In addition to X , the algorithm requires you

to input k, the number of different groups it should create. To get

started, run it multiple times, setting k from 2 to 10. Each time,

you should obtain a different extra column for X . Cross-validate

the model for each grouping, and keep the one that helps your

model the most.

If you are using an automatically generated grouping of rows

as a new feature, there’s an interesting data exploration exercise

you can do. Look into the records assigned to each group, and try

to come up with a name that best represents it. This game will

sometimes lead you to interesting discoveries!

Feature Extraction

As we collect features,X may end up having columns which highly

correlate to each other. When this happens, redundant information

is being passed to the model, which in most cases is not very use-

ful. Most models work best when each column ofX carries distinct

information. Fortunately, there are special math tricks that allow

you to compress the information contained in a group of columns

into fewer, more representative features. This process is called

feature extraction.

A well-known feature extraction trick is the PrincipalComponent

Analysis, or PCA.4 It requires columns in X to be normalized via

z-score first. PCA transforms some columns into less correlated

columns that preserve the original information. Let’s see an exam-

ple where columns store the average, minimum and maximum

daily temperatures in a city:

4For an interactive explanation of PCA, see http://code.energy/pca.

212 | COMPUTER SCiENCE UNLEASHED

T
max

T
avg

T
min

−1.0

7.8

−3.8

1.2

0.0

6.9

1.7

7.8

−2.1

10.66.6

1.7

−0.5

−5.5

2.2

5.0

6.3

−2.4

4.3

8.3 1.1

T
max

T
avg

T
min

−1.16

0.61

−0.98

−0.54

−1.45

1.06

0.61

0.74

−0.46

−1.000.97

0.69

0.03

−1.49

2.2

−1.70

0.89

−1.55

0.33

−0.87 0.51

C
2

C
1

C
3

1.81

−0.80

0.09

1.08

0.06

−1.93

−0.01

−0.12

−0.18

0.94−1.37

0.27

−0.01

0.01

−0.24

−0.03

−1.25

2.59

−0.94

0.18 −0.15

T
avg

 / T
min

0.77T
max

 / T
min

0.96T
avg

 / T
max

0.88

T
min

3.85

4.08T
max

T
avg

3.56

Standard Deviation

T
avg

 / T
min

0.77T
max

 / T
min

0.96T
avg

 / T
max

0.88

T
min

1.08

1.08T
max

T
avg

1.08

C
1

 / C
3

0.00C
2

 / C
3

0.00C
1

 / C
2

0.00

C
3

1.79

0.52C
2

C
1

0.15

Correlation

Z-SCORE PCA

Figure 5.29 Features transformed via z‑scores and PCA. At each step,

the correlation coefficient between columns is shown, as well as each

column’s standard deviation.

PCA returns a newX where columns display little correlation with

each other. Furthermore, PCA tends to compact more information

in the columns to the left and orders them by decreasing levels

of variance. We can then try to discard the columns to the right,

which display little variance, and see if the model performs better.

It often does!

Another feature extraction trick is the Non-negative Matrix

Factorization, or NMF. As its name suggests, it only works ifX con-

tains no negative values. It allows us to compress the information

of X into a number of columns of our choosing. Let’s use NMF to

transform the data from our previous example into two columns:

Learning | 213

T
max

T
avg

T
min

−1.0

7.8

−3.8

1.2

0.0

6.9

1.7

7.8

−2.1

10.66.6

1.7

−0.5

−5.5

2.2

5.0

6.3

−2.4

4.3

8.3 1.1

T
max

T
avg

T
min

0.15

0.74

0.16

0.39

0.00

1.00

0.16

0.74

0.32

1.000.97

0.69

0.48

0.00

0.21

1.00

0.93

0.00

0.72

0.78 0.63

C
1

0.27

0.00

0.62

0.67

0.22

0.09

0.34

0.67

0.74

0.91

0.00 0.00

0.13

0.24

C
2

T
avg

 / T
min

0.77T
max

 / T
min

0.96T
avg

 / T
max

0.88

T
min

3.85

4.08T
max

T
avg

3.56

Standard Deviation

T
avg

 / T
min

0.77T
max

 / T
min

0.96T
avg

 / T
max

0.88

T
min

0.41

0.48T
max

T
avg

0.34

C
1

/C
2 0.34

C
1

0.24C
2

0.35

Correlation

MINMAX NMF(2)

Figure 5.30 Features transformed via MinMax and NMF. At each step,

the correlation coefficient between columns is shown, as well as each

column’s standard deviation.

Unlike PCA, NMF generated unordered columns that are all equally

relevant. While PCA outputs a series of columns of diminishing rele-

vance, NMF attempts to split information into columns representing

distinct behaviors. As usual, it’s helpful to experiment with differ-

ent numbers of output columns. Test your model with NMF tables

of different sizes, and pick the number that works best.

Before PCA or NMF, columns ofX typically represent a specific

measurement or attribute. After either transformation, columns no

longer have a direct link to an attribute from the real world, even

though they collectively retain the original information. This may

help a machine, but it makes the data less transparent to humans.

For this reason, feature extraction is usually the last step of the

feature engineering process.

214 | COMPUTER SCiENCE UNLEASHED

Feature Selection

Some features might hinder a model’s performance rather than help

it. This often happens with redundant features, features containing

bad quality data, or features that aren’t really related to y. Remov-

ing unhelpful columns from X is called feature selection.

Model performance will vary when we use different subsets of

features and want to select the subset that maximizes performance.

The only way to guarantee this is to evaluate all possible selections

of columns, keeping track of the best selection found. That’s called

an exhaustive search, and it’s only doable if X has few columns.

With many features, the number of subsets to evaluate explodes.5

In these cases, we select features via heuristic methods: meth-

ods that lead to a solution without guaranteeing it is the best or

optimal one. The simplest such method is called backward elimi-

nation. We keep checking if removing one of the features improves

performance. If it does, the feature is dropped. Once we’ve tried

removing all features without success, we stop and keep the fea-

tures that remained:

keep_changing ← True

while(keep_changing)

keep_changing ← False

for each column in X

X_new ← X.remove(column)

if is_better(X_new, X)

X ← X_new

keep_changing ← True

break

The reverse process is called forward selection: start with an empty

feature set and keep adding new features one-by-one, as long as

they improve performance. When there’s a tie between selecting a

larger or a smaller group of features, opt for the smaller option.6

There are many more feature selection strategies. They will

generally make amodel simpler and faster, in addition to improving

its performance.

5The number of subsets from a set with n elements is 2n.
6Backward elimination and forward selection are forms of greedy heuristic

methods we described in our first book, Computer Science Distilled.

Learning | 215

Data Leakage, Again

We’ve seen that our labeled dataset has to be split into training and

validation sets in order to evaluate a model. Since the validation set

is used to gauge the model’s true performance outside of its training

realm, it should never affect the training of the model.

This also applies to feature engineering: all transformations

will affect the training of the model, and therefore must be cali-

brated only using the training set. Failing to do so amounts to data

leakage, as described in Section 5.1. Let’s go through some exam-

ples to make sure you get the idea.

Suppose you’re performing mean imputation to one of your

columns. The mean values are calculated from the rows of the train-

ing set only. The blank cells of the training and validation sets will

both be filled with the mean of the training set. This way, no infor-

mation from the validation set leaks into the training set.

Similarly, you must always decide which values are considered

outliers based on the training set only. After this decision is made,

apply the exact same numerical operations to both training and val-

idation sets.

When normalizing via MinMax, use the training set’s minimum

and maximum values as your reference for transforming both the

training and the validation sets. If you’re normalizing via z-scores,

consider the training set’s mean and standard deviation. When

developing binning strategies, consider the occurrence of labels in

the training set only to decide how your data should be categorized.

The same rules apply for feature extraction: the PCA or NMF

algorithm should be calibrated using the training set. The exact

samemathematical operations will then be performed on both train-

ing and validation sets.

We’ve seen that the training set changes for each independent

evaluation during cross-validation. This means your feature engi-

neering transformations should be re-calibrated and applied to

each new pair of training and validation sets. Watch out: don’t

calibrate and apply feature engineering transformations only once

and before cross-validation, but rather many times during cross-

validation. It’s a common mistake that often leads to inaccurate

predictions down the line.

216 | COMPUTER SCiENCE UNLEASHED

Model Selection

Open source machine learning libraries are available for most

modern programming languages. These libraries usually come

preloaded with dozens of different models you can readily put

to use.

Each different model employs different mathematical tricks to

train and predict. As you become a seasoned machine learning

practitioner, you’ll eventually learn how models work and behave

in different situations. This experience will help you use different

models more effectively.

If you’re getting started with machine learning, it’s OK to try all

available models in your machine learning library, even if you have

no clue how they work under the hood. As you try them, you’ll

empirically discover which ones are best for the predictive tasks

you’re working on.

There’s just one thing you must research about every model you

use: its configuration settings known as hyperparameters. They

should be adjusted to your prediction task. Sticking to default set-

tings often results in bad performance and prevents you from fairly

evaluating a model’s potential.

In order to properly adjust your hyperparameters, start by

checking the model’s documentation. Once you know what your

options are, start experimenting. For example, you could try dou-

bling or halving the default values of each hyper-parameter and

see how it affects performance. Keep tinkering with the hyperpa-

rameters until you’re confident you’ve found the right setting for

each.7 After you’ve adjusted the hyperparameters of each model

you intend to evaluate, you can compare their performance and

finally select the one that works best.

Final Steps

After you adjust your features and model, it’s time to prepare the

system for real world deployment. Since you’ve already decided

7When you gain some experience, you’ll discover methods that automatically

search through many hyperparameter settings for a given model and select the

best one automatically.

Learning | 217

all of your adjustments, you don’t need a validation set anymore.

Take all of your imputation, outlier handling, normalization, and

binning rules, as well as your feature extraction transformations,

and calibrate them using your entire labeled dataset.

The next step is to take your chosen model with its ideal hyper-

parameters and train it using your entire labeled dataset. Combined,

your feature transformation rules and your trained model are your

final prediction system, ready to be put to use.

Once a new, never-before-seen event happens, feed its features

to the system. If you did everything right, it will output a glimpse

of the event’s unknown future. That glimpse will be as accurate

as you have evaluated the model’s performance to be via cross-

validation… Or will it?

Unfortunately, since you’ve been using the entire dataset over

and over to adjust your system, there’s still a possibility that some

overfitting has crept in during the fine-tuning phase. This means

that your system is adjusted to your dataset better than it would

be to any other events. In other words, it will perform better on

records of your labeled dataset than on never-before-seen events.

TEST SET The only way to ensure a completely unbiased evaluation

of a predictive system is to evaluate it with data it has never been in

contact with. To this end, we could have separated a small part of

our labeled dataset into a test set before we had even started with

cross-validation. The test set is never used for training, validation,

or final preparation of the model. It is only used for a single, ulti-

mate evaluation of the model that will go live. If the labeled data is

unbiased, the model’s performance on the test set should be a true

sample of its performance in the real world.

Conclusion

Building a machine learning system is an intricate process. There

are many details you must get right to obtain usable predictive

results. So take advantage of existing libraries: they will help you

perform feature engineering, cross-validation, and model evalua-

tion. Many of them can do nearly everything we saw in this chapter.

218 | COMPUTER SCiENCE UNLEASHED

When using such libraries, data transformations and cross-

validation steps only take a few lines of code. It’s common for

programmers to use code notebooks to share this type of code.

Code notebooks mix text, code, and plots in the same file, and can

easily be viewed, re-executed and experimented with.

The reproducibility principle that was discussed at length in the

previous chapter also applies to machine learning. Make sure all

transformations of your data are reproducible and structured in a

pipeline that’s easy to modify. The same goes for processes to fine-

tune your model and its hyperparameters.

Keep in mind that this was an introduction to the practice of

machine learning. There are many tricks we didn’t mention. For

instance, there are techniques for combining the prediction results

of different models into a so-called ensemble, which often outper-

forms any individual model.

Machine learning is developing at a fast pace. New techniques

for feature engineering and model selection are published every

year, and big tech companies are now offering cloud computing

services with automated platforms for predictive model creation.

By practicing the concepts presented in this chapter, you’ll be able

to make the best use of these resources… and make sense of the

artificial intelligence revolution as it unfolds.

Figure 5.31 Machine learning doesn’t solve everything.

It can be scary to think thatmachines are influencing our decisions—

or that they are outrightmaking them for us. Whenever a prediction

might influence someone’s life, think of the possible consequences.

Machine learning is neither good nor evil: it’s your job to use it

ethically and responsibly.

Learning

Reference

• Machine Learning for Absolute Beginners, by Theobald

– Get it at https://code.energy/theobald

• The Data Science Design Manual, by Skiena

– Get it at https://code.energy/skiena

• Deep Learning, by Goodfellow

– Get it at https://code.energy/goodfellow

• The Elements of Statistical Learning, by Tibshirani

– Get it at https://code.energy/tibshirani

• Prof. Raschka’s paper on Model Evaluation and Selection

– Get it at https://code.energy/raschka

219

CONCLUSiON

We have actually succeeded in making our discipline

a science, and in a remarkably simple way: merely

by deciding to call it ‘computer science’.

—Donald Knuth

This book presented ways in which computer science unleashed

powers that enabled programmers to build the digital world we live

in. By using these concepts yourself to play with networks and data

science, you will contribute to an even more resourceful society.

We tried to limit the depth of our exploration to an introduc-

tory level. The goal was to show you the essentials that everyone

who works with code should know. We hope to have sparked your

curiosity to keep exploring with the books referenced at the end of

each chapter. You will also find after this conclusion a bonus chap-

ter about regular expressions: a technique for searching patterns

which will help you with the processing steps of any data analysis

or machine learning task.

We wanted to include more topics in this book, but it grew too

large. For instance, when presenting machine learning, we skipped

the algorithms that enable computers to gather knowledge without

human supervision. And we haven’t talked about cloud comput-

ing, which enables new worlds to be created much faster. Stay

tuned if you’re interested in these topics—we might cover them in

an upcoming book! If you bought this book from Code Energy, you

will receive annoucement emails from us. Otherwise, you can sign

up to receive our updates at http://code.energy/list.

Hopefully, this book improved your theoretical understanding

of computational systems. Now, it’s time to get out there and play!

Start a new coding project and practice what you learned. As a

wise coder once said:

“If you find that you’re spending almost all your time on

theory, start turning some attention to practical things; it

221

222 | COMPUTER SCiENCE UNLEASHED

will improve your theories. If you find that you’re spending

almost all your time on practice, start turning some attention

to theoretical things; it will improve your practice.”

Lastly, don’t hesitate to send us your feedback on the book: email

us at hi@code.energy. The feedback we received from our first

book, Computer Science Distilled, motivated us to write this one and

brought our attention to details in our writing style that could be

improved. Thank you!

BONUS

Patterns

Regular expressions allow you to master your data.

Control it. Put it to work for you. To master

regular expressions is to master your data.

—Jeffrey Friedl

C
oders often work with data that matches a given pat-

tern. Let’s consider a document containing dates written

as “Feb 27th 2013”, “27/2/13” and “2013-02-27”. How

do we find all the dates in such a file? Writing programs to detect

patterns is time-consuming and quite tedious.

Figure 7.1 Don’t ask your boss on a date!

Thankfully, we can define patterns of text such as date formats

using regular expressions. These expressions can then be inter-

preted by existing software so we don’t have to write the pattern-

matching code ourselves. In this chapter, we’ll learn to:

Match basic patterns,

Precisely quantify repeating patterns,

Anchor patterns to locations,

Capture groups of items within a pattern.

223

224 | COMPUTER SCiENCE UNLEASHED

Regular expressions are also referred to as regex or regexp. They

are tremendous time-savers loved by most programmers. They are

easy to integrate in your code thanks to the many readily available

libraries and tools. In fact, they are already built in most program-

ming languages, source code editors, command line tools, etc.

Figure 7.2 “I used to be a big stuttering piece of code. Now I’m sharp

and clear, and I easily find dates!”

Matching

A regular expression is like a search term on steroids. Consider the

following line:

District 1, Paris

That’s a simple regular expression, and it works as a typical search.

A regular expression engine is a program that will interpret this

expression, run it against some text, and report a match if the string

“District 1, Paris” can be found. There are slight variations in syntax,

features, and behaviors across engines. Nerds call them flavors.

Patterns | 225

Most flavors are case-sensitive by default, so “district 1, paris”

would not have been matched. Fortunately, they also allow you

to configure the way they crunch data through flags. For example,

the case insensitive flag (typically denoted i) would allow us to

find “district 1, paris” from our capitalized expression.1

We strongly encourage you to try all the regular expressions

in this chapter. Open http://code.energy/regex and you’ll see a

field for your regular expression, and a text box for a test input. It

will show where the expression matches the input. You can also

set flags. Try it and observe how the case insensitive flag affects

your matches!

The Dot

Let’s suppose you want to search for any of these phrases:

• “District 1, Paris”,

• “District 2, Paris”,

• “District 3, Paris”,

• “District 4, Paris”.

Instead of carrying out four searches, we can let the tenth character

of a single search match anything:

District ., Paris

In regular expressions, the dot (.) has a special meaning: it will

match any single character. Our expression will evenmatch phrases

we’re not interested in such as “District 0, Paris” and “District !,

Paris”. Nevertheless, the dot provides a quick way to find text that

loosely matches your pattern. Consider this expression:

c.........y

It matches “calligraphy”, “consistency”, and “chaotically”, and

since the dot also matches the space character, “can be easy” and

1The way to set flags varies across flavors. Flags are sometimes appended

after a forward slash, for instance District 1, Paris/i.

226 | COMPUTER SCiENCE UNLEASHED

“code energy” are also matched. Note that boundaries between

words aren’t considered here, so “cisco enjoy” will be found in

“Francisco enjoyed”. Let’s see how all this allows us to do far more

than a static search:

Domain Name You remember an email mention-

ing a website that ends with mil and a country code.

You don’t remember much else: it could be mil.br/,

eng.mil.ru/, mil.be/frite, etc. How can you find

the domain?

All country code top-level domains have two characters. The dot

matches any character, even an actual period. This expression will

find all possible matches:

mil.../

The dot is mostly used for quick, dirty work and it typically finds

much more than we’re expecting. Let’s now see how to be very

specific with regular expressions.

The Set

A term written inside [•••] brackets is called a set. A set works

like a dot, though it will only match one of the characters contained

in its brackets. Replace the dot with a set and our search for Parisian

districts becomes exact:

District [1234], Paris

This will only match the four cases in which we’re interested. Such

ranges of characters are often used in sets, and so there exists a

shorthand to make them compact and easy to read:

• [1-4] is equivalent to [1234],

• [h-p] is equivalent to [hijklmnop].

Patterns | 227

This improves our solution to the Domain Name problem :

mil.[a-z][a-z]/

A set can contain multiple ranges. For instance, the following reg-

ular expression matches a character that is either in the 0-9 range

or in the A-F range. In other words, it matches a hex digit:2

[A-F0-9]

By stacking a # and six of these sets, we can match hex color codes,3

such as #E67F31:

#[A-F0-9][A-F0-9][A-F0-9][A-F0-9][A-F0-9][A-F0-9]

Some sets are very common in regular expressions. Lazy program-

mers defined shorthands for matching a digit and for matching an

alphanumeric character:

• \d is equivalent to [0-9],

• \w is equivalent to [A-Za-z0-9_].4

In order to match a ten digit phone number (e.g. 307-555-0177),

we’d have to repeat [0-9] ten times. Repeating the shorthand is

more compact:

\d\d\d-\d\d\d-\d\d\d\d

We will soon discover even better ways to repeat sets.

2In hex, a single digit is a value from 0 to 15. Since we ran out of Hindu-

Arabic numerals, the letters a-f are used as numerals for values 10 to 15. For

more about hexadecimal digits, see the Appendix I.
3The symbol # followed by three pairs of hex digits is a commonway to encode

colors. Each pair indicates the amount of red, green, or blue light it is made of.

For instance, #FF0000 indicates maximum red light, but no green or blue lights.

Googling such a string will immediately return you the corresponding color!
4Notably, \w includes the underscore. The underscore is allowed in source

code variable names, so programmers can have variables like beer_count. Adding

the underscore to \w makes it easier to match variable names in source files.

228 | COMPUTER SCiENCE UNLEASHED

The Negated Set

We sometimes want to match almost any character. Rather than list-

ing the many accepted characters in a set, we list the characters that

are not accepted in a negated set. It’s the opposite of a set in that it

matches any character that is not listed within its brackets. It looks

like a normal set, but with a caret after the first bracket: [^•••].

Trading You have a list of currencies, each written

as a three-letter code, such as JPY (¥), USD ($), and GPB

(£). Some of these are special currencies, such as XBT

(Bitcoin) and XAU (Gold). The special ones always start

with X. List all non-special currency codes.

Using sets, we’d have to list every letter:

[A-WY-Z][A-Z][A-Z]

Matching anything that isn’t an X to the first character is simpler:

[^X][A-Z][A-Z]

Note that this will also match “0AA”, “.AA”, or “ AA”, as the negated

list matches any character that’s not in its brackets. Whether or not

[^X][A-Z][A-Z] will only match actual currency codes depends

on our input. Negated sets are also useful for catching things we

didn’t expect:

Proofreading While reviewing this book, we had to

check that every punctuation mark is followed by a space.

How did we search for this kind of goof?

If there is anything other than a space after a punctuation character,

we can match it and review it:

[.,:;?!][^]

Did you notice that we’re using a period character inside the set,

and that it matches an actual period? That’s because characters

Patterns | 229

inside the set lose their special powers. Let’s now learn to do this

outside of sets.

Special Characters

To make a special character5 lose its regex functionality, we use \,

the escape character. For instance, \. matches an actual period

character—it’s the same as [.]. The Domain Name problem

now has an even more precise solution:

mil\.[a-z][a-z]/

Other characters can also be expressed with an escape sequence.

This comes in handy when matching non-printable characters:

• \t matches a tab,

• \n matches a new line,

• \r matches a carriage return (useful in Windows),

• \f matches a page break,

• \s is equivalent to [\t\r\n\f].

The shorthand \s is called whitespace. Note that it includes the

regular space character! This allows us to improve the solution to

the Proofreading problem so it doesn’t waste our time returning

punctuation followed by new lines and page breaks:

[.,:;?!][^\s]

With dots, sets, negated sets, special characters and shorthands, we

can now flexibly match individual characters. But what if we don’t

know exactly how many characters we’re looking for?

5These guys: . ? * + ^ $ | [] { } () \.

230 | COMPUTER SCiENCE UNLEASHED

Quantifiers

In our previous expression matching ten digit phone numbers, the

repeating \d are bulky and hard to read. To simplify, we can use

quantifiers that change the number of characters a \d will match.

Curly Braces

We can specify exactly how many times a character or set of char-

acters must match using curly braces. For instance, the regular

expression that matched ten-digit phone numbers can be rewritten:

\d{3}-\d{3}-\d{4}

This expression is equivalent to \d\d\d-\d\d\d-\d\d\d\d,

only cleaner. It reads “match three digits, then a dash, then three

digits, then a dash, then four digits”. A quantifier can also be used

to improve the expression that finds hexadecimal color codes:

#[A-F0-9]{6}

Components of the expression match exactly once by default, so

{1} has no effect: B{1}e{2}r{1} is the same as Beer. Moreover,

besides these fixedmatch requirements, we can also specify a range.

It’s possible to state a minimum or a maximum number of matches:

exactly n times: {n},

at least n times, and at most m times: {n,m},

at least n times, with no upper limit: {n,}.

Note that n can be zero, effectively making the beer optional.

Messy Numbers Brazilian phone numbers have vari-

able lengths. The area code has two digits, and the local

number can have eight or nine digits. Also, the dash

before the last four digits is sometimes omitted. How can

we find these numbers in a document?

Patterns | 231

We can use one range quantifier to specify the number of acceptable

digits and another to make the second dash optional:

\d{2}-\d{4,5}-{0,1}\d{4}

This expression can seem intimidating, so let’s decode it bit by bit:

• \d{2} matches two digits,

• - matches a single dash,

• \d{4,5} matches four or five digits,

• -{0,1} matches no dashes or a single dash,

• \d{4} matches four digits.

The Optional

The quantifier we used to make the dash optional in our last expres-

sion is so common that there exists a shorthand. We can replace

{0,1} with ?. The phone expression now reads:

\d{2}-\d{4,5}-?\d{4}

The ? is called the optional. Whether the character that imme-

diately precedes the ? is actually there doesn’t matter, the match

happens regardless. The optional is useful when looking for web

URLs that may or may not use encryption:6

https?://code\.energy

This finds both http://code.energy and https://code.energy.

The Plus

The plus (+) is another useful shorthand. It’s the same as {1,},

indicating something must appear at least once, with no upper limit.

For instance:

du+de

6Recall from Chapter 3 that https is used in a URL instead of http to indicate

it should be accessed using SSL encryption.

232 | COMPUTER SCiENCE UNLEASHED

This matches “dude”, “duude”, “duuude”, and so forth. If we want

to catch links to any .com domain:7

https?://[a-z0-9-]+\.com

The Star

The most powerful quantifier is the star (*). It’s equivalent to {0,}

and combines the effect of the optional and the plus. It denotes an

optional term that can occur unlimited times. For example:

yea*h

This matches “yeh”, “yeah”, “yeaah”, “yeaaah”, and so on. A dot

and a star (.*) will match anything: it will accept any character,

any number of times. If you think your input contains the word

“restaurant”, some random text, and then the word “London”, you

can try to find:

restaurant.*London

The .* will take care of any text between the two words. You can

also use this trick to match any quote:

".*"

Greediness

The last regular expression (".*") has a problem. Test it with the

following input:

Avaritia porro "hominem" ad quod "vis maleficium" impellit.

7This expression would also match some invalid domains, because the dash

isn’t allowed at the start or end of the name. To handle that, we need an advanced

regex feature called lookarounds. Learn more at http://code.energy/lookaround.

Patterns | 233

Quantifiers are greedy: they try to consume as many characters as

possible.8 The dot and the star will run from the first quotation

mark of our input to the last, returning:

"hominem" ad quod "vis maleficium"

To match only "hominem" , replace the dot with a negated set:

"[^"]*"

By default, regular expression engines will return their first match.

To get multiple matches, there’s the global flag, usually denoted g.

It would make our last search match both "hominem" and "vis mal-

eficium". Note that a character cannot be part of two matches,

therefore this would not return " ad quod ".

Anchors

So far, our regular expressions could match characters and phrases

anywhere in the input. Anchors control exactly where matches are

allowed. Anchors don’t consume characters, rather they restrict the

possible positions for matches.

The Caret

When used outside brackets, the caret (^) restricts matches to the

start of a line. Consider the following expression:

^Once upon a time

It will only match the start of a line that introduces a fairy tale.

Many coders use a sequence of dashes (----) to create horizontal

separators in plain text files. We can find them with this expression:

^-+

It matches a sequence of dashes, but only if it starts a line.

8Many flavors also offer lazy quantifiers as an alternative. Lazy quantifiers

will consume as few characters as possible.

234 | COMPUTER SCiENCE UNLEASHED

The Dollar

The dollar anchors the match to the end of a line. For example,

take the following expression:

happily ever after\.$

It will only match a line that finishes with a happy ending. You

can use both anchors in the same expression. This one searches

for a fairy tale:9

^Once upon a time.*happily ever after\.$

We can update our expression that finds separators made of dashes

to match lines that only contain dashes:

^-+$

Can you guess how to match an empty line? Hint: you just need

two anchors in your expression.

Clean Code In most programming languages, end-

ing a line of code with a space is frowned upon, as it serves

no purpose. How can you find these “trailing spaces”?

Finding trailing spaces is simple—we match one space or more at

the end of a line:

+$

THEMULTiLiNEFLAG In some flavors, the caret and dollar refer to the

beginning and end of the entire input: they ignore line breaks. To

change this behavior, there’s the multiline flag, typically denoted m.

It will force carets and dollars to recognize new line characters.

9In most flavors, the dot will only match a new line character if the s flag is

used. Use that flag to find a fairy tale spanning multiple paragraphs!

Patterns | 235

The Boundary

Some words are embedded in others. For instance, searching for

funwill match characters within “funeral”, and searching for rude

will also find “prudent”. These are called koala words.10 Take the

following search:

art Martial arts impart artists as art.

What if we’re just looking for the word “art”? The boundary anchor

(\b) solves this by restricting matches to the start or end of a word:

\bart Martial arts impart artists as art.

art\b Martial arts impart artists as art.

\bart\b Martial arts impart artists as art.

\barts?\b Martial arts impart artists as art.

In the last expression, the plural form is an accepted koala word. If

we are only interested in words that start with an a and end with

an s, then we use a set and a plus or star:

\ba[a-z]+s\b Martial arts impart artists as art.

\ba[a-z]*s\b Martial arts impart artists as art.

Don’t let the koalas confuse you. Anchor your expressions.

10We made that up.

236 | COMPUTER SCiENCE UNLEASHED

Groups

As yet, we have only seen quantifiers work on a single preceding

character. Groups allow quantifiers to work on a sequence of char-

acters, or even on an entire expression. They are created using

parenthesis: (•••). For example:

(meta-)*analysis

Here, the meta- part of the expression can theoretically match zero

to infinite times. The expression finds “analysis”, “meta-analysis”,

“meta-meta-analysis”, and so on.

Big Numbers You need to find big numbers in a long

report. Commas separate thousands, and some numbers

have fractional digits. How to retrieve all the numbers?

We could be lazy and try:

\b[0-9,.]+\b

However, this would also match other things, such as “10.12.1815”.

To retrieve numbers that use dots and commas correctly, we can

use groups with quantifiers:

\b\d{1,3}(,\d{3})*(\.\d+)?\b

Let’s parse that expression from left to right:

\b The match must start at a word boundary.

\d{1,3} Maximum three leftmost digits.

(,\d{3})* Optionally, a comma followed by three digits.11

(\.\d+)? Optionally, a dot followed by at least one digit.

\b The match must end at a word boundary.

11Can be repeated unlimited times to match thousands, millions, billions, etc.

Patterns | 237

Capturing Groups

Groups are also called capturing groups: the regular expression

engine keeps the text theymatched as internal variables. These vari-

ables are often used to create elaborate find-and-replace schemes.

Quirky quotes A French translator handed you a

text that includes quotes made with straight quotation

marks, "like this". He asks you to replace themwith French

guillemets, for the quotes to look « like this ».

You can’t directly find-and-replace the " character. It has to become

either a « or a » character, depending on its position. If we add a

group to our previous regular expression that finds quotationmarks,

the text inside the quotation mark is stored in an internal variable,

called \1. We can tell the regular expression engine to replace the

matched string with a new text that makes use of this variable:

Find: "([^"]*)"

Replace: « \1 »

If the regular expression has multiple groups, more capture vari-

ables are created. To reformat US telephone numbers separated

with spaces using parenthesis and hyphens, you can do this:

Find: (\d{3}) (\d{3}) (\d{4})

Replace: (\1) \2-\3

Here, \1 stores the text that was matched inside the first group, \2

stores the text from the second group, and so on. Whenever you

need to do a find-and-replace operation that’s not static, remember

to use groups!

238 | COMPUTER SCiENCE UNLEASHED

The Alternation

When we want to match one of several expressions, we use the

alternation, denoted |. It works similarly to a logical OR. For exam-

ple, to match phone numbers only from Puerto Rico, we need one

of these two area codes:

(787|939)-\d{3}-\d{4}

Notice that we confined the alternation within a group because it

has lowest precedence. In other words, removing the parentheses:

787|939-\d{3}-\d{4}

is equivalent to

(787)|(939-\d{3}-\d{4})

This is wrong: the machine will read “match 787, or a ten-digit

phone number starting with 939”. Always be careful when using

the alternation outside a group. Let’s try another example.

Marsupial Mates A ranger in the Australian Out-

back is studying kangaroo breeding behavior. Her agency

monitors their population and dates its statistics in a

Mon YY format. She knows kangaroo births peak in sum-

mer months. How can she search the data for these

summer statistics?

The search must be restricted to the summer months of the South-

ern Hemisphere: December, January, and February:

(Dec|Jan|Feb) \d\d

If our ranger is researching one specific summer, she would have

to drop the parentheses and specify the years:

Dec 92|Jan 93|Feb 93

Here, using the two groups (Dec|Jan|Feb) (92|93) is too

broad. It would match months covering three summers: Jan 92,

Feb 92, Dec 92, Jan 93, Feb 93, Dec 93.

Patterns | 239

Conclusion

In this chapter, we learned how to concisely search for elaborate

patterns. We’ve observed how regular expressions are built from

a combination of characters, some representing themselves, some

representing special functions. You should use these tools when:

• You must validate that an input matches an expected format

(e.g. phone number, date, IP address, credit card number),

• You don’t know the exact sequence of characters you’re look-

ing for, but you know how it should appear,

• You must perform complicated find-and-replace operations.

If you’re working on a generic pattern, such as an IP address or

a phone number, you can find ready-to-use regular expressions

online. There are many regular expression libraries and cookbooks

that will help you find common patterns.

When designing your own expression, start with something sim-

ple that broadly matches what you search and from there, refine

your expression to be more and more specific.

Nearly all programming languages and tools support regular

expressions, but be careful: there are many subtle variations across

flavors. Some will interpret parentheses as literal characters, and

thus require you to type \(•••\) instead of (•••) to create

a group. Some older engines lack support for certain anchors,

such as the word boundary. And how do we go about matching

Japanese characters? The conceptual understanding you gained

from this chapter will help you navigate reference material and

online resources on regular expressions to find answers.

Install a regular expression extension on your browser now, so

you can test it on web pages. Additionally, find how to use regular

expressions in your source code editor. To write this book, we used

one called Vim, that carries out all searches through regular expres-

sions. If there is a way to make regular expressions the default

search mode of your editor, do it—that will force you to practice

them and you will save time in the long run.

240 | COMPUTER SCiENCE UNLEASHED

Figure 7.3 “Regular Expressions”, courtesy of http://xkcd.com.

Even if you’re not involved in a hasty crime investigation (fig. 7.3),

having quick access to specific information is essential to work effi-

ciently. The better you are with regular expressions, the faster you

can retrieve the data you need, learn them and save hours of valu-

able coding time.

Reference

• Mastering Regular Expressions, by Friedl

– Get it at https://code.energy/friedl

• Regular Expressions Cookbook, by Goyvaerts and Levithan

– Get it at https://code.energy/goyvaerts

APPENDiX

I Numerical Bases

Computing can be reduced to operating with numbers, because

information is expressible in numbers. Letters can be mapped to

numbers, so text can be written numerically. Colors are a combina-

tion of light intensities of red, blue and green, which can be given as

numbers. Images can be composed by mosaics of colored squares,

so they can be expressed as numbers.

Archaic number systems (e.g., roman numerals: I, II, III,…)

compose numbers from sums of digits. The number system used

today is also based on sums of digits, but the value of each digit in

position i is multiplied by d to the power of i, where d is the num-

ber of distinct digits. We call d the base. We normally use d = 10
because we have ten fingers, but the system works for any base d:

103 × 4 = 4000

102 × 3 = 300

101 × 2 = 20

100 × 1 = 1

163 × 1 = 4096

162 × 0 = 0

161 × 14 = 224

160 × 1 = 1

212 × 1 = 4, 096

27 × 1 = 128

26 × 1 = 64

25 × 1 = 32

20 × 1 = 1

84 × 1 = 4, 096

82 × 3 = 192

81 × 4 = 32

80 × 1 = 1

Hexadecimal

Base 16

0 1E1

0123

4, 096 + 0 + 224 + 1 = 4, 321

Decimal

Base 10

3 124

0123

4, 000 + 300 + 20 + 1 = 4, 321

Octal

Base 8

3 140

0123

1

4

Binary

Base 2

0 100

0123

1 011

4567

0 000

891011

1

12

4, 096 + 192 + 32 + 1 = 4, 321

4, 096 + 192 + 32 + 1 = 4, 321

Figure 8.1 The number 4,321 in different bases.

241

Appendix II

II Cracking the Shift Cipher

In the “Secret Code ” problem of sec. 3.1, we challenged you to

crack the substitution cipher that encrypted the following message:

MAXI KBVX HYLX VNKB MRBL XMXK GTEO BZBE TGVX VTKX

EXLL VHFF NGBV TMBH GLVH LMEB OXL

One simple approach is to try all possible number of shifts on the

first few letters of the ciphertext:

LZWH JAUW

↑↑↑
1

MAXI KBVX

KYVG IZTV

↑↑↑
2

MAXI KBVX

JXUF HYSU

↑↑↑
3

MAXI KBVX

···

NBYJ LCWY

↑↑↑
25

MAXI KBVX

This is a decent way to find the solution, but with a pen and paper

we can go a bit faster. First, take the first letter of the ciphertext

and write down the rest of the alphabet backwards, like so:

1 2 3 · 25

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

Notice that after arriving at the letter A, we continue counting from

the last letter of the alphabet: Z,Y,Z.... Let’s add more lines

of the reversed alphabet, each time starting with the next letter of

the ciphertext:

1 2 3 · 25

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

1 2 3 · 25

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

1 2 3 · 25

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

I H G F E D C B A Z Y X W V U T S R Q P O N M L K J

242

Appendix II

Can you see a pattern emerge in a column? Let’s continue for a

few more lines:

1 2 3 · · · · · · · · · · · · · · · 19 · · · · · 25

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

I H G F E D C B A Z Y X W V U T S R Q P O N M L K J

K J I H G F E D C B A Z Y X W V U T S R Q P O N M L

B A Z Y X W V U T S R Q P O N M L K J I H G F E D C

V U T S R Q P O N M L K J I H G F E D C B A Z Y X W

X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

The 19th column reads THE PRICE! Since all other columns are

gibberish, we know we found our key:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

19
↓↓↓

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

We can now decrypt the entire text:

THEP RICE OFSE CURI TYIS ETER NALV IGIL ANCE CARE

LESS COMM UNIC ATIO NSCO STLI VES

↑↑↑
19

MAXI KBVX HYLX VNKB MRBL XMXK GTEO BZBE TGVX VTKX

EXLL VHFF NGBV TMBH GLVH LMEB OXL

Finally, by rearranging the spaces and adding punctuation, we find:

THE PRICE OF SECURITY IS ETERNAL VIGILANCE.

CARELESS COMMUNICATIONS COST LIVES.

243

Appendix III

III Cracking the Substitution Cipher

In the “Hollow Coin ” problem of sec. 3.1, we challenged you to

crack the substitution cipher that encrypted the following message:

DUA KVYBVHA PVJ OAZQMASAO DW CWES PQLA KASJWFVZZC.

AMASCDUQFH QJ VZZ SQHUD PQDU DUA LVGQZC. PA PQJU

CWE JEYYAJJ. HSAADQFHJ LSWG DUA YWGSVOAJ.

Let’s start with the most basic frequency analysis observation: in

English, the most common letter is E and the most common pair

of consecutive letters is TH. Since the most common letter of the

ciphertext is A and the most common letter pair is DU, we can try

the mappings E→A and T,H→D,U:

THE KVYBVHE PVJ OEZQMESEO TW CWES PQLE KESJWFVZZC.

EMESCTHQFH QJ VZZ SQHHT PQTH THE LVGQZC. PE PQJH

CWE JEYYEJJ. HSEETQFHJ LSWG THE YWGSVOEJ.

Our work is made easier by the fact that the ciphertext has kept the

spaces and punctuation of the plaintext. We can immediately see

that our tentative mapping T,H,E→D,U,A has a good chance of

being correct, as the common word THE appears three times!

Building on that assumption, there’s a sentence that starts with

PE, which could either stand for ‘be’, ‘he’ or ‘we’. We already have

a mapping for H, so we try B→P and W→P. The former takes us to a

dead end: the sentence would then start with the phrase BE BQJH,

which could only make sense if it stood for “be both”, creating a con-

flict with our previous mapping T→D. Therefore, we retain W→P:

THE KVYBVHE WVJ OEZQMESEO TW CWES WQLE KESJWFVZZC.

EMESCTHQFH QJ VZZ SQHHT WQTH THE LVGQZC. WE WQJH

CWE JEYYEJJ. HSEETQFHJ LSWG THE YWGSVOEJ.

Let’s have a look at the words with fewest missing letters. For

instance, WQTH immediately gives us I→Q. With this new mapping,

WQJH becomes WIJH, which in turn gives us S→J:

THE KVYBVHE WVS OEZIMESEO TW CWES WILE KESSWFVZZC.

EMESCTHIFH IS VZZ SIHHT WITH THE LVGIZC. WE WISH

CWE SEYYESS. HSEETIFHS LSWG THE YWGSVOES.

244

Appendix III

Again, we look for the words with fewest missing letters: WVS

gives us A→V and TW gives us O→W. In addition, the fact an

unknown character appears twice in the same word can also be

a clue: SEYYESS gives us U,C→E,Y and HSEETIFHS gives us

G,R,N→H,S,F:

THE KACBAGE WAS OEZIMEREO TO COUR WILE KERSWNAZZC.

EMERCTHING IS AZZ RIGHT WITH THE LAGIZC. WE WISH

COU SUCCESS. GREETINGS LROG THE COGRAOES.

The closer we get to the solution, the faster we advance! COUR and

COU give us Y→C, EMERYTHING gives V→M, and EVERYTHING IS

AZZ RIGHT gives us L→Z:

THE KACBAGE WAS OELIVEREO TO YOUR WILE KERSWNALLY.

EVERYTHING IS ALL RIGHT WITH THE LAGILY. WE WISH

YOU SUCCESS. GREETINGS LROG THE COGRAOES.

We’re almost there! The missing mappings can quickly be resolved

to P,K,D,F,O,M→K,B,O,L,W,G, and the plaintext holds no

more secrets:

THE PACKAGE WAS DELIVERED TO YOUR WIFE PERSONALLY.

EVERYTHING IS ALL RIGHT WITH THE FAMILY. WE WISH

YOU SUCCESS. GREETINGS FROM THE COMRADES.

Finally, we can write down what we know of the encryption key, in

case we find a new ciphertext that also uses it. The missing letters

are those that don’t appear in the message:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

↓ ↓

E K Y T U N M G _ S P F V _ D W I _ R _ H A O _ C L

As you can see, this simple substitution cipher is not very secure, as

we were able to crack it in a few straightforward steps. Although

these ciphers are more challenging when the position of spaces is

unknown, computers can make quick work of them regardless. To

try that out, head over to http://code.energy/substitution.

245

Appendix IV

IV Evaluating Classifiers

In Chapter 5, we learned about prediction models: algorithms that

can make a series of predictions, which we call y, given data related

to each prediction, which we callX . There are two types of models.

Regressors make numerical predictions, while classifiers predict an

outcome that’s divided into labeled groups. We already learned

to score how well a regressor is making its predictions. Let’s now

learn how to score classifers as well.

Since classifiers predict labels, let’s start simple: suppose y is

made of binary data. Since it has only two labels, all we need is a yes

or no answer for each row. We call this binary classification. Pre-

dicting if a patient will develop diabetes or if a credit card purchase

is fraudulent are examples of binary classification.

A natural approach is to evaluate the percentage of correct pre-

dictions, called the accuracy. However, this is often a terrible way

to assess how well a model is doing. Let’s see how it fares:

Finding Fraud You’re the techie of a bank trying

to prevent credit card fraud. They asked you to create a

model that predicts if a payment is fraudulent based on

transaction details. You trained two models—a chilled

model and a paranoid model —to predict fraud on

exisiting data of 1,000 transactions, of which 10 are

known cases of fraud. You now wish to compare their

performance to an untrained lazy model that randomly

calls 1% of transactions fraudulent. Here is how each of

the three models performed:

Found no fraud, incorrectly called 10,

Found 8 frauds, incorrectly called 19 more,

Found all frauds, incorrectly called 87 more.

Which model is most accurate?

The paranoid model missed no frauds, therefore it made 0+87=87

mistakes and 913 correct predictions, yielding an accuracy of 91.3%.

246

Appendix IV

The chilled model missed 2 frauds, therefore it made 2+19=21mis-

takes and 979 correct predictions, yielding an accuracy of 97.9%.

On the other hand, the lazy model missed the 10 frauds, therefore

it made 10+10=20 mistakes and 980 correct predictions, yielding

an accuracy of 98%. The lazy model is the most accurate, even

though it’s useless!

To better evaluate classifiers, we must see how they make right

and wrong predictions. To this end, we build a confusion table

that counts correct and incorrect predictions for each label:

10

Fraud

(10)

No Fraud

(990)

Fraud

(10)
10

980

No Fraud

(990)

0

Predicted

T
ru

th

87

Fraud

(97)

No Fraud

(990)

Fraud

(10)
0

903

No Fraud

(903)

10

Predicted

T
ru

th

0

Fraud

(10)

No Fraud

(990)

Fraud

(10)
0

990

No Fraud

(990)

10

Predicted

T
ru

th

19

Fraud

(27)

No Fraud

(990)

Fraud

(10)
2

971

No Fraud

(973)

8

Predicted

T
ru

th

Figure 8.2 Confusion tables for the lazy, chilled, and paranoid classi‑

fiers. A unicorn classifier with 100% accuracy is shown for reference.

A prediction is incorrect when the predicted label and the true label

differ, as shown in red in fig. 8.2. Notice how the previously men-

tioned accuracies can be obtained for each table by dividing the

sum of black cells by 1,000. Let’s now see which other metrics we

can use to make sense of the confusion tables.

247

Appendix IV

SENSiTiViTY The percentage of fraud that a model is able to identify

is the sensitivity score. For example:

Found 0 of 10 frauds, sensitivity = 0%,

Found 8/10 frauds, sensitivity = 80%,

Found 10/10 frauds, sensitivity = 100%.

Here, the best sensitivity score is obtained by the paranoid model,

since it was able to identify the complete list of frauds. On the

other hand, the chilled model found most frauds, but the list was

incomplete. The lazy model was the least sensitive, since it found

nothing interesting!

PRECiSiON The percentage of a model’s predictions of fraud which

are correct is the precision score. For example:

Correct about 0 of 10 predicted frauds, precision = 0%,

Correct about 8/27 predicted frauds, precision ≈ 29.6%,

Correct about 10/97 predicted frauds, precision ≈ 10.3%.

The best precision score was obtained by the chilled model, since

almost a third of the predicted frauds were actual frauds. The para-

noid model is less precise: only 10% of them are useful. Finally,

the lazy model was the least precise, since all of its fraud predic-

tions are useless!

It is now clear that the lazy model is terrible. However, it can

be difficult to choose which is better between the chilled and the

paranoid models, since one has better sensitivity and the other has

superior precision. Thankfully, there is a commonly used metric

that solves this issue.

F₁ SCORE A good evaluation of a model’s predictive performance

considers both sensitivity and precision. If either is zero, the model

has no predictive power, so its final score should also be equal to

zero. To achieve this, scientists calculate a special kind of average

(called the harmonic mean) on the sensitivity and precision scores.

They call it the F1 score:

F1 = 2×
precision× sensitivity

precision+ sensitivity
.

248

Appendix IV

The F1 score ranges from 0 to 1 (or 100%). Plugging the precision

and sensitivity scores in the formula for each model, we find:

F1 = 0%,

F1 ≈ 0.43 = 43%,

F1 ≈ 0.19 = 19%.

According to this metric, the chilled model has more than twice the

predictive power than the paranoid model. This stems mainly from

the paranoid model’s terrible precision.

FALSE ALARMS From a customer’s perspective, there’s one more

important metric: how often will my honest transactions get

rejected? The percentage of truly good transactions that were

incorrectly classified as fraud is called the false alarm rate, also

known as the false positive rate. For instance:

Incorrect about 10 of 990 honest transactions, FAR ≈ 1.0%,

Incorrect about 19/990 honest transactions, FAR ≈ 1.9%,

Incorrect about 87/990 honest transactions, FAR ≈ 8.8%.

Here, the paranoid model distinguishes itself from the others by

raising many false alarms: nearly one in ten honest transactions

are classified as fraud. Depending on the application, the false

alarm rate is used instead of the precision in order to quantify a

model’s usefulness.

When evaluating your model, try to formulate what your are

calculating in a sentence rather than with math only. In our exam-

ple, we could say: “the paranoid model blocked 8.8% of transactions

by honest clients.” This can help you choose which metrics matter

the most in your specific situation.

Classification Trade‑Off

A classifier’s predict function outputs the label it believes each

row is most likely to assume. In addition, most classifiers can pro-

vide its estimation of the probability that a row belongs to a label.

This way, we can change a model’s label assignment logic to predict

a label more often. This technique allows us to obtain two seem-

ingly very different models from a single engine:

249

Appendix IV

0.31

0.33

0.17

0.39

0.55

0.05

0.48

Pred. Fraud

Probability

No Fraud

No Fraud

Fraud

Fraud

0.30

threshold

Fraud

Fraud

Fraud

No Fraud

No Fraud

No Fraud

No Fraud

Fraud

No Fraud

No Fraud

0.50

threshold

Fraud

No Fraud

No Fraud

No Fraud

Fraud

No Fraud

No Fraud

True

Label

y y pred

<latexit sha1_base64="YBHyPoWM+kDR4O0yhU4CIbAYgJQ=">AAACAnicbVDLSgMxFM34rPU16krdDBahqzIjii4LgrisYB/QKUMmk7ahSWZI7ohlKG78AT/CjQtF3PoV7vwB9/6B6WOhrQcuHM65N7n3hAlnGlz305qbX1hcWs6t5FfX1jc27a3tmo5TRWiVxDxWjRBrypmkVWDAaSNRFIuQ03rYOx/69RuqNIvlNfQT2hK4I1mbEQxGCuxdP+liCbHI+oPAB3oLSmTmhWgQ2AW35I7gzBJvQgrlveDh6+K7VgnsDz+KSSqoBMKx1k3PTaCVYQWMcDrI+6mmCSY93KFNQyUWVLey0QkD59AokdOOlSkJzkj9PZFhoXVfhKZTYOjqaW8o/uc1U2iftTImkxSoJOOP2il3IHaGeTgRU5QA7xuCiWJmV4d0scIETGp5E4I3ffIsqR2VvOPSyZVJo4jGyKF9dICKyEOnqIwuUQVVEUF36BE9oxfr3nqyXq23ceucNZnZQX9gvf8A9P2cEg==</latexit>

0

Fraud

(1)

No Fraud

(5)

Fraud

(2)
1

5

No Fraud

(6)

1

Predicted

T
ru

th

3

Fraud

(3)

No Fraud

(5)

Fraud

(2)
0

2

No Fraud

(4)

2

Predicted

T
ru

th

Figure 8.3 Classifying using two different thresholds.

By setting a lower threshold, the model is more sensitive to clues

for fraud, so sensitivity gets a boost. On the other hand, more pur-

chases are incorrectly classified as fraudulent, thwarting precision.

Since the precision, sensitivity, and F1 scores change according

to the threshold, a single measurement of these scores isn’t suffi-

cient to comprehensively evaluate a classifier. In our small sample,

the higher threshold yields F 1 ≈ 0.67, whereas the lower thresh-

old yields F 1 ≈ 0.57. However, this doesn’t necessarily indicate

the higher threshold is preferable.

Choose your evaluation method and classifier threshold accord-

ing to real world needs. If the benefit of identifying fraud is high,

and the downside of incorrectly classifying valid purchases is low,

the higher threshold may be better.

In general, we try to assess the minimal acceptable sensitivity

and precision scores early. If other people are going to use our

classifier, they should help determine the bounds of the trade-off

for adjusting the threshold.

250

Appendix IV

ROC Curves

The early-warning radar was a brand new technology at the onset

of WorldWar II. Radars sometimes picked up signals which puzzled

its operators. They weren’t always sure if faint signals came from

enemy aircraft or from parasitic radio noise, yet they had to decide

whether to raise the alarm. A false alarmwasted precious resources,

but ignoring a real threat could have devastating consequences.

While trying to determine which radio signals were true threats,

a radar operator worked similarly to a classifier. The metrics used

to score classifiers also work to gauge radar performance: the sen-

sitivity is the percentage of incoming enemy aircraft that triggered

an alarm, and the false alarm rate is the percentage of non threat-

ening radio signals that triggered an alarm.

Radar operators quickly realized there was a trade-off between

the sensitivity and false alarm rate. Sensitivity could be boosted by

making radio receivers register weaker signals, but doing so also

made it trigger more false alarms. To decide how sensitive their

radio receivers should be, they decided to collect data at many dif-

ferent settings and plot the resulting scores:

False Alarm Rate

S
e

n
si

ti
v

it
y

0.4 0.60.2 0.80.0 1.0

0.4

0.6

0.2

0.8

1.0

Figure 8.4 If this old radar was tuned to detect 95% of invading

aircraft, about 80% of non‑threatening radio signals resulted in false

alarms. Making the receiver less sensitive reduced the false alarm rate

to20%, but indoing so, only 60%of incomingaircraftcouldbedetected.

251

Appendix IV

They called it a receiver operating characteristic (ROC) curve.

Radars were then improved and delivered higher sensitivity for the

same false-alarm rate, and ROC curves moved upwards on their

plots. In general terms, the better the radar technology, the larger

the shaded area under the curve (AUC score) shown in fig. 8.4.

You can plot a ROC curve for your own classifier by calculating

the sensitivity and false-positive rate for all possible classification

thresholds. The curve can help you decide which threshold to use.

Also, the AUC score is a good indicator of the classifier’s overall

performance. This score is useful as a generic assessment of pre-

dictive power, especially if you haven’t yet chosen which threshold

you’ll use with the classifier.

Multiclass Classification

Scores for binary classifiers can also be adapted for classifying more

than two labels. For instance, suppose you have to guess whether a

person is born in the US, Mexico, or Canada. You train a classifier,

and then try it with 100 people: 65 Americans, 25 Mexicans, and

10 Canadians. Prediction results can be summarized in a 3-by-3

confusion table, so we can see how predictions were right or wrong

for each label:

1(10) 90

1

2

(12)

11

(51)

(25)

(65) 24

13

(37)

39

Predicted

T
ru
th

Figure 8.5 Confusion table of a multiclass classifier.

The table shows where the model is confused. It had a difficult time

differentiating and : Americans were incorrectly classified

as Mexicans 24 times, and Mexicans were incorrectly classified as

Americans 11 times. This suggests that more features with clues to

distinguish Americans from Mexicans should be added.

252

Appendix IV

The diagonal of black numbers contains the correct guesses.

The model was correct 39+13+9=61 times out of 100, so its

accuracy is 61%. As we’ve seen, accuracy can be misleading, and

we must use metrics such as sensitivity and precision in order to

capture a model’s true predictive power. Since these metrics are

defined for binary classification, we must re-express our multiclass

classifier as a combination of binary classifiers:

12

(51)

(35)

(65) 26

23

(49)

39

Predicted

T
ru
th

sensitivity = 60%,

precision = 76%,

F1 = 67%.

24

(37)

(75)

(25) 12

51

(63)

13

Predicted

T
ru
th

sensitivity = 52%,

precision = 35%,

F1 = 42%.

3

(12)

(90)

(10) 1

87

(88)

9

Predicted

T
ru
th

sensitivity = 90%,

precision = 75%,

F1 = 82%.

Figure 8.6 A multiclass classifier seen as three binary classifiers. For

each label, a confusion table isbuiltwhereall other labelsweregrouped.

For instance, the first confusion table shows how the model classified

people as American or non‑American.1 With this trick, we can calculate

precision, sensitivity, andF1 for each label.

1If the output ypred is one-hot encoded, each of these confusion tables corre-

sponds to one of the one-hot encoded columns.

253

Appendix IV

In order to obtain a single score for the model, we calculate the

mean of the three individual F1 scores, which is 0.64. This is called

the macro F1 score. However, this score can be unfair: the label

contributes to the macro score as much as the label, even though

there are over six times more labels. When averaging label

scores, it’s best to calculate a weighted mean, where each weight

is the count of a label in y. We call it the micro F1 score:

(65× 0.67) + (25× 0.42) + (10× 0.82)

65 + 25 + 10
≈ 0.62 = 62%.

Make sure you see in fig. 8.6 where each of the numbers 65, 25, and

10 come from. Moreover, remember these scores only represent the

performance of the model for the specific label thresholds you are

using, as seen for binary classifiers. If you adjust the thresholds,

the same model will yield different scores.

254

MORE FROM CODE ENERGY

In this book, we explore how

computer science has radically

changed the way we exchange

information and learn from

large amounts of data, but we

don’t examine how the com-

puters themselves work and

how coders interact with them.

This is because we already

cover the core concepts of com-

puter science in our first book,

Computer Science Distilled.

We strongly recommend you

check it out!

Computer Science Distilled is

a brief walk-through of essen-

tial computer science concepts you must know. Its writing style

is similar to Computer Science Unleashed: academic formalities are

kept to a minimum, and the language is clear and accessible. The

book was also designed for beginners.

It starts with a light introduction to discrete mathematics and

then presents common algorithms and data structures. Finally, it

outlines the working principles of computer hardware and program-

ming languages. Understanding these topics is your next step to

computer science mastery, as they neatly complement the content

of this book. Get your copy of Computer Science Distilled at:

http://code.energy/computer-science-distilled

COLOPHON

This book was created with X ELATEX, a type-

setting engine for Donald Knuth’s TEX system.

The text is set Charter, a typeface designed

by Matthew Carter in 1987, based on Pierre-

Simon Fournier’s characters from the XVIII

Century. Other fonts include Source Code

Pro, Source Sans Pro and Calendas Plus.

The emoji were kindly provided by Twemoji,

an open-source project maintained by Twitter.

The cover image was created from schematics

of the first electronic computers, built between

1941 and 1945: Zuse’s Z3, Turing’s Colossus,

Harvard’s Mark I, and the ENIAC.

	Preface
	Connections
	Links
	Internet
	IP Addressing
	IP Routing
	Transport

	Communication
	Names
	Time
	Access
	Mail
	Web

	Security
	Legacy
	Symmetry
	Asymmetry
	Hashing
	Protocols
	Hacking

	Analysis
	Collection
	Processing
	Summarizing
	Visualization
	Testing

	Learning
	Features
	Evaluation
	Validation
	Fine-Tuning

	Conclusion
	Bonus: Patterns
	Matching
	Quantifiers
	Anchors
	Groups

	Appendix
	Numerical Bases
	Cracking the Shift Cipher
	Cracking the Substitution Cipher
	Evaluating Classifiers

